
Workshop on

The Roadmap for the Revitalization

of High-End Computing

C O M P U T I N G R E S E A R C H A S S O C I A T I O N

J u n e 1 6 - 1 8 , 2 0 0 3

Edited by Daniel A. Reed

This workshop was sponsored by the National Coordination Office for Information

Technology Research and Development (www.nitrd.gov).

The views expressed in this report are those of the individual participants and are not

necessarily those of their respective organizations or the workshop sponsor.

© 2003 by the Computing Research Association. Permission is granted to reproduce the

contents provided that such reproduction is not for profit and credit is given to the source.

ON THE COVER: left to right: Colliding black holes (courtesy of Ed Seidel, Louisiana State

University); Methanol adsorbed on chabazite (courtesy of Bernhardt Trout, Massachusetts

Institute of Technology); Asteroid hitting Venus's atmosphere (courtesy of Don Korycansky,

University of California at Santa Cruz; Kevin Zahlne, NASA; and Mordecai-Mark Mac Low,

American Museum of Natural History). All images courtesy of the NCSA Access Magazine.

Table of Contents

PREFACE .1

1. EXECUTIVE SUMMARY .3

1.1. ENABLING TECHNOLOGIES .3

1.2. COTS-BASED ARCHITECTURES .4

1.3. CUSTOM ARCHITECTURES .4

1.4. RUNTIME AND OPERATING SYSTEMS .5

1.5. PROGRAMMING ENVIRONMENTS AND TOOLS 5

1.6. PERFORMANCE ANALYSIS .6

1.7. APPLICATION-DRIVEN SYSTEM REQUIREMENTS 6

1.8. PROCUREMENT, ACCESSIBILITY, AND COST OF OWNERSHIP 7

2. ENABLING TECHNOLOGIES FOR HIGH-END COMPUTING 9

2.1. ENABLING TECHNOLOGIES .9

2.1.1. Device Technologies .9

2.1.2. Memory Devices .12

2.1.3. Storage and I/O .12

2.1.4. Interconnects .13

2.1.5. Single Chip Architecture .14

2.1.6. Power/Thermal Management and Packaging 14

2.1.7. Software Methods and Algorithms 15

2.2. SUMMARY OF STRATEGIC FINDINGS .16

2.3. ENABLING TECHNOLOGY ROADMAP .17

2.3.1. Time Scales and Investments 17

2.3.2. Key Technologies .18

3. COTS-BASED ARCHITECTURES .21

3.1. ENABLING TECHNOLOGIES .21

3.1.1. Memory Systems and Interconnects 22

3.1.2. System Heterogeneity .22

3.2. SUMMARY OF STRATEGIC FINDINGS .23

3.2.1. Government Coordination .23

3.2.2. Long-Term Research Funding 23

3.3. OTHER CHALLENGES .24

3.3.1. Parallel Processing .24

3.3.2. Scalable Software and Tools .24

4. CUSTOM ARCHITECTURES .25

4.1. CUSTOM-ENABLED ARCHITECTURE .25

4.1.1. Strategic Benefits .26

4.1.2. Challenges .27

4.2. SUMMARY STRATEGIC FINDINGS .27

4.2.1. Advantages .27

4.2.2. Near- and Medium-Term Opportunities 27

4.2.3. Strategic Par tnerships .28

4.2.4. Funding Culture .28

4.2.5. Innovation in System Software and Programming

Environments .28

4.2.6. Application Requirements Characterization 29

4.2.7. Basic Research for End of Moore’s Law 29

4.3. TECHNICAL DIRECTIONS FOR FUTURE CUSTOM ARCHITECTURES 30

4.3.1. Fundamental Opportunities Enabled by Custom

Architecture .30

4.3.2. Examples of Innovative Custom Architectures 32

4.3.3. Enabling and Exploiting Global Bandwidth 33

4.3.4. Enabling and Exploiting Function-Intensive Structures . . .34

4.3.5. Efficiency via Custom Mechanisms 34

4.3.6. Execution Models .34

4.4. OPEN ISSUES .35

4.4.1. Programming and HEC Architecture 35

4.4.2. The Role of Universities .35

4.5. ROADMAP .36

4.5.1. Five Years (FY05-FY09) .37

4.5.2. Ten Years (FY10-FY14) .38

4.5.3. Fifteen Years (FY15-FY19) .39

4.6. SUMMARY AND CONCLUSIONS .39

5. RUNTIME AND OPERATING SYSTEMS .41

5.1. RECURRING THEMES .41

5.2. OPERATING SYSTEM INTERFACES .42

5.3. HARDWARE ABSTRACTIONS .43

5.4. SCALABLE RESOURCE MANAGEMENT .43

5.5. DATA MANAGEMENT AND FILE SYSTEMS 44

5.6. PARALLEL AND NETWORK I/O .45

5.7. FAULT MANAGEMENT .45

5.8. CONFIGURATION MANAGEMENT .46

5.9. OPERATING SYSTEM PORTABILITY .47

5.10. OPERATING SYSTEM SECURITY .48

5.11. PROGRAMMING MODEL SUPPORT .51

6. PROGRAMMING ENVIRONMENTS AND TOOLS 53

6.1. KEY OBSERVATIONS .53

6.2. THE STATE OF THE ART AND AN EVOLUTIONARY

PATH FORWARD .54

6.2.1. Software Productivity .55

6.3. REVOLUTIONARY APPROACHES .56

6.3.1. Research on the Hardware/Software Boundary 57

6.4. BEST PRACTICES AND EDUCATION .58

7. PERFORMANCE MODELING, METRICS, AND SPECIFICATIONS 59

7.1. BASIC METRICS .60

7.2. CURRENT PRACTICE IN SYSTEM PROCUREMENTS 61

7.3. PERFORMANCE-BASED SYSTEM SELECTION 62

7.3.1. Performance Modeling .63

7.3.2. System Simulation .64

7.3.3. Performance Monitoring Infrastructure 65

7.3.4. Libraries, Compilers, and Self-Tuning Software 66

8. APPLICATION-DRIVEN SYSTEM REQUIREMENTS 69

8.1. APPLICATION CHALLENGES .69

8.1.1. Lattice QCD .70

8.1.2. Computational Biosciences .70

8.2. SYSTEM CHALLENGES .71

8.3. CURRENT SYSTEM LIMITATIONS .72

8.4. SUPPORT ENVIRONMENT REQUIREMENTS 72

9. PROCUREMENT, ACCESSIBILITY, AND COST OF OWNERSHIP 75

9.1. PROCUREMENT .75

9.1.1. Requirements Specification .75

9.1.2. Evaluation Criteria .76

9.1.3. Contract Type .76

9.1.4. Process Improvement .76

9.1.5. Other Considerations .77

9.2. ACCESSIBILITY .77

9.3. COST OF OWNERSHIP .78

10. REFERENCES .81

APPENDIX A. PROGRAM COMMITTEE MEMBERS 83

APPENDIX B. WORKING GROUP CHARTERS AND PARTICIPANTS 85

B.1. ENABLING TECHNOLOGIES .85

B.1.1. Charter .85

B.1.2. Par ticipants .85

B.2. COTS-BASED ARCHITECTURES .86

B.2.1. Charter .86

B.2.2. Par ticipants .86

B.3. CUSTOM ARCHITECTURES .87

B.3.1. Charter .87

B.3.2. Par ticipants .87

B.4. RUNTIME AND OPERATING SYSTEMS .88

B.4.1. Charter .88

B.4.2. Par ticipants .88

B.5. PROGRAMMING ENVIRONMENTS AND TOOLS 89

B.5.1. Charter .89

B.5.2. Par ticipants .89

B.6. PERFORMANCE MODELING, METRICS, AND SPECIFICATIONS 90

B.6.1. Charter .90

B.6.2. Par ticipants .90

B.7. APPLICATION-DRIVEN SYSTEM REQUIREMENTS 91

B.7.1. Charter .91

B.7.2. Par ticipants .91

B.8. PROCUREMENT, ACCESSIBILITY, AND COST OF OWNERSHIP92

B.8.1. Charter .92

B.8.2. Par ticipants .92

APPENDIX C. LIST OF ATTENDEES .95

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g 1

The most constant difficulty in contriving the engine has arisen

from the desire to reduce the time in which the calculations were

executed to the shortest which is possible.
Charles Babbage, 1791-1871

Preface
Several recent developments in high-end computing (HEC) have stimulated a re-examina-

tion of current U.S. policies and approaches. These developments include: 1) the deploy-

ment of Japan’s Earth System Simulator, which now occupies the number one position on

the Top 500 list of the world’s fastest computers; 2) concerns about the difficulty in achiev-

ing substantial fractions of peak hardware computational performance on high-end sys-

tems; and 3) the ongoing complexity of developing, debugging, and optimizing applications

for high-end systems. In addition, there is growing recognition that a new set of scientific

and engineering discoveries could be catalyzed by access to very-large-scale computer sys-

tems — those in the 100 teraflop to petaflop range. Lastly, the need for high-end systems in

support of national defense has led to new interest in high-end computing research, devel-

opment, and procurement.

In recognition of these developments, the FY03 federal budget included the following obser-

vations and guidance regarding high-end computing:

Due to its impact on a wide range of federal agency missions ranging from national securi-

ty and defense to basic science, high-end computing — or supercomputing — capability is

becoming increasingly critical. Through the course of 2003, agencies involved in developing

or using high-end computing will be engaged in planning activities to guide future invest-

ments in this area, coordinated through the NSTC. The activities will include the develop-

ment of an interagency R&D roadmap for high-end computing core technologies, a federal

high-end computing capacity and accessibility improvement plan, and a discussion of issues

(along with recommendations where applicable) relating to federal procurement of high-end

computing systems. The knowledge gained for this process will be used to guide future invest-

ments in this area. Research and software to support high-end computing will provide a

foundation for future federal R&D by improving the effectiveness of core technologies on

which next-generation high-end computing systems will rely.

In response to this guidance, the White House Office of Science and Technology Policy

(OSTP), in coordination with the National Science and Technology Council, commissioned

the creation of the interagency High End Computing Revitalization Task Force (HECRTF).

The interagency HECRTF was charged to develop a five-year plan to guide future federal

investments in high-end computing.

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g2

To ensure broad input from the national community during its planning process, the

HECRTF solicited public comments on current challenges and opportunities. Using the

White Papers from this public request for comments, a program committee (see Appendix A)

organized a community input workshop for focused discussions. Held June 16-18, 2003, the

Workshop on the Roadmap for the Revitalization of High-End Computing was structured

around eight working groups. Each group was given a specific and focused charter (summa-

rized in Appendix B) that addressed a specific aspect of high-end computing (e.g., technolo-

gy, COTS-based or custom architecture, software, and applications).

This report is a summary of the workshop findings. Its purpose is to provide guidance to the

national community and the HECRTF when planning future national programs for the

development, specification, procurement, deployment, and application of future high-end

computing systems.

Acknowledgments

The report and the workshop would not have been possible without the diligence and hard

work of a great many individuals. As workshop chair, I am indebted to the members of the

program committee for their insights, experience, and guidance. I am also thankful for the

enthusiasm and response of the working group chairs and vice chairs. Without their coordi-

nation and writing, this report would not have been possible.

Lastly, the workshop benefited from the able assistance of the staff from the National

Coordination Office (NCO) and the Computing Research Association (CRA). I am especial-

ly grateful to David Nelson (NCO), Thomas Sterling (Caltech/JPL), and Robert Sugar

(University of California at Santa Barbara) for their work in developing the working group

charters and questions.

Dan Reed, Workshop Chair

National Center for Supercomputing Applications

Urbana, Illinois

1

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

EXECUTIVE SUMMARY

Based on their deliberations, the workshop’s eight working groups developed a set of key

findings and recommendations to advance the state of high-end computing in the United

States. The common theme throughout these recommendations is the need for sustained

investment in research, development, and system acquisition. This sustained approach also

requires deep collaboration among academic researchers, government laboratories, industrial

laboratories, and computer vendors.

Simply put, short-term strategies and one-time crash programs are unlikely to develop the

technology pipelines and new approaches required to realize the petascale computing sys-

tems needed by a range of scientific, defense, and national security applications. Rather, mul-

tiple cycles of advanced research and development, followed by large-scale prototyping and

product development, will be required to develop systems that can consistently achieve a

high fraction of their peak performance on critical applications, while also being easier to

program and operate reliably. A summary of the most critical findings of the workshop in

each of the eight areas follows.

1.1. Enabling Technologies

Power management and interconnection performance are of great and mounting concern.

Today’s very-large-scale systems consume megawatts of power, with concomitant packaging

and cooling problems. Equally important, many computations are limited by the bandwidth

and latency among chips, boards, and chassis. A variety of new device technologies and three-

dimensional integration and packaging concepts show promise in ameliorating the intercon-

nect bandwidth and heat dissipation problems. We urge that attention be focused on these

to move them toward system feasibility and prototype.

Looking further ahead, there are many novel devices based on superconducting technologies,

spintronics, photonic switching, and molecular electronics that are exciting and can be game-

changers for the high end. However, it is much too early to choose just a few, and we urge a

broad, consistent, long-term research agenda to incubate and test these ideas in preparation

for future generations of systems.

Software for large-scale systems requires scaling demonstration to assess its importance. New

approaches that reduce time to solution through better shared computing models and

libraries, coupled with real-time performance monitoring and feedback, are needed to

achieve the promise of high-end computing.

3

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

1.2. COTS-Based Architectures

The bandwidth of today’s COTS memory systems and interconnection networks limits the

performance of HEC applications. The advent of memory-class ports into microprocessors

will permit implementation of higher-bandwidth, lower-latency interconnects. Moreover,

higher-speed signaling and higher-radix routers will make interconnection networks with

higher bandwidths and flatter topologies practical. Lastly, field programmable gate arrays

(FPGAs) will embed specialized functions, application kernels, or alternate execution models

(e.g., fine-grain multi-threading) in a format that is optimized yet malleable. However, realiz-

ing these advanced technologies will require continued investment.

More generally, we must develop a government-wide, coordinated method for influencing

vendors. The HEC influence on COTS components is small, but it can be maximized by

engaging vendors on approaches and ideas five years or more before the resulting commer-

cial products are created. Given these time scales, the engagement must also be focused and

sustained.

We must fund long-term research on the key technologies needed for future high-end sys-

tems. Beyond the research funding itself, academic researchers need access to HEC-scale sys-

tems to test new ideas in realistic situations. Once ideas are proven in a research setting, the

best ones must be incorporated into production systems by an intentional process.

1.3. Custom Architectures

Custom high-end computer architectures are designed explicitly to be incorporated in high-

ly scalable system structures and operate cooperatively on shared parallel computation to

deliver substantially higher performance, efficiency, and programmability than COTS-based

systems, while imposing lower cost, space, and power requirements. Multiple technical

approaches for custom-enabled architectures of significant promise have been identified

that, with necessary funding, can be realized in the near and medium term, including, but

not limited to: a) spatially direct-mapped architecture, b) vectors, c) streaming architecture,

d) processor-in-memory architecture, and e) special purpose devices.

Proof of concept of such innovative architectures is feasible within the next five years, and

petaflops-scale computer systems can be deployed substantially before the end of this decade.

However, to meet this objective it is imperative that research in advanced, custom scalable HEC

architecture be sponsored at an accelerated and continuous level to regain U.S. leadership in

this technology, which is strategically critical for national security and commerce. New partner-

ships are required among industry, universities, government laboratories, and mission agencies.

Both system software and programming environments must be developed that support and

exploit the capabilities of the custom architectures. System software must be developed to

provide the dynamic resource management anticipated by many of these architectures in

4

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

order to improve performance efficiency and remove much of the burden from the pro-

grammers. Programming environments must be developed that capture and expose intrinsic

algorithm parallelism for greater performance, and provide high-level constructs to eliminate

low-level and error-prone detail to minimize application development time. In addition,

effective software means must be provided to enable rapid porting of legacy applications

and libraries to maintain continuity of the user software base.

1.4. Runtime and Operating Systems

Unix and its variants have been the operating systems of choice for the technical world for

nearly thirty years. While Unix has served the community well, its very design point and set

of assumptions are increasingly at odds with the needs of high-end computing. Alternate

resource management models are needed that provide better performance feedback for

dynamic adaptation, including increasing coupling among operating system, runtime, and

applications. New models for I/O coordination and security are needed as well. Simply put,

more system software research that is revolutionary, rather than evolutionary, will be needed

to support the next generation of petascale systems.

Lastly, the current lack of large-scale testbeds is limiting operating system and runtime

research for the HEC community. Such testbeds can provide the broad research community

with access to flexible testing environments and scalability research platforms. These test-

beds should be available to university groups, national laboratories, and commercial software

developers.

1.5. Programming Environments and Tools

The most pressing scientific challenges will require application solutions that are multidisci-

plinary and multi-scale. In turn, these software systems will require an interdisciplinary team

of scientists and software specialists to design, manage, and maintain them. This will require

a dramatically higher investment in improving the quality, availability, and usability of the

software tools used throughout an application’s life cycle.

The strategy for accomplishing these goals is not complex, but it requires an attitude change

about software funding for HEC. Software is a major cost component of modern technolo-

gies, but the tradition in HEC system procurement is to assume that the software is free.

Mission critical and basic research HEC software is not provided by industry because the

market is so small and the customers are not willing to pay for it. Federally funded manage-

ment and coordination of the development of high-end software tools for high-end systems

are needed.

Funding is also needed for basic research and software prototypes, and for the technology

transfer required to move successful prototypes into real production quality software. It is

urgent that we invest in building interoperable libraries and software component and appli-

5

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

cation frameworks that simplify the development of these complex HEC applications. It is

also essential that we invest in new, high-level programming models for HEC software devel-

opers that will improve productivity, and create new research programs that explore the

hardware/software boundary to improve HEC application performance.

Structural changes are needed in the way funding is awarded to support sustained engineer-

ing. We need a software capitalization program that resembles the private sector in its under-

standing of the software life cycle. One approach to coordinating a federal effort in this area

would be to establish an institute for HEC advanced software development and support,

which could be a cooperative effort among industry, laboratories, and universities.

1.6. Performance Analysis

The single most relevant metric for high-end system performance is time to solution for the

specific scientific applications of interest. Reducing the time to solution will require aggres-

sive investment in understanding all aspects of the program development and execution

process (programming, job setup, batch queue, execution, I/O, system processing, and post-

processing).

The current practice in system procurements is to require vendors to provide performance

results on some standard industry benchmarks and several scientific applications typical of

those at the procuring site. Constructing these application benchmarks is a cost- and labor-

intensive process, and responding to these solicitations is very costly for prospective vendors.

Moreover, these conventional approaches to benchmarking will not be suitable for future

acquisitions, where the system to be procured may be more than ten times more powerful

than existing systems.

Recent successes with performance modeling suggest that it may be possible to accurately pre-

dict the performance of a future system, much larger than systems currently in use, on a sci-

entific application much larger than any currently being run. However, significant research is

needed to make these methods usable by non-experts. Research is also needed to bolster capa-

bilities to monitor and analyze the exploding volume of performance data that will be pro-

duced in future systems. All of this research will require significant involvement by vendors,

and thus some dialogue will be needed to resolve potential intellectual property issues.

1.7. Application-Driven System Requirements

Attendees representing multiple disciplines made the quantitative case for speedups in sus-

tained performance of 50 to 100 over current levels to reach new, important scientific

thresholds. In QCD, architectures with a sustained performance of 20 to 100 teraflops

would enable calculations of sufficient precision to serve as predictions for ongoing and

planned experiments. In magnetic fusion research, sustained execution of 20 teraflops would

allow full-scale tokamak simulations that resolve the natural length scales of the microturbu-

6

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

lence, as well as enable self-consistent gyrokinetic modeling of the critical plasma-edge region.

Lastly, 50 teraflops was identified as an important threshold for developing realistic models

of lanthanides and actinides on complex mineral surfaces for environmental remediation,

and for developing new catalysts that are more energy efficient and generate less pollution.

Applications have become so complex that multidisciplinary teams of application and com-

puter scientists are needed to build and maintain them. The traditional software model of a

single programmer developing a monolithic code is no longer relevant at the high end and

cutting edge. In particular, large teams with diverse domain expertise are needed to integrate

multi-scale simulation models. No single person or small group has the requisite expertise.

Application codes and their associated analysis tools are the instruments of computational

science. The developers of these applications can be likened to instrument specialists in that

they possess the most detailed knowledge of the applications’ capabilities and usage. Unlike

experimental science, however, the computational end stations need not be located at the

HEC facilities. Within this facilities analogy, HEC users in the form of collaborative research

teams would interface primarily with the application specialists within domain-specific

research networks that develop, optimize, and maintain the relevant applications.

1.8. Procurement, Accessibility, and Cost of Ownership

Procurements should use functional specifications to define science requirements and the

application environment. One should also minimize the number of mandatory require-

ments, avoid restricting competition, and permit flexible delivery schedules. The total cost of

ownership, together with technical and risk assessments, should be the primary evaluation

criterion. Agencies that are large users should provide HEC services to agencies that are small

users, employing any of the appropriate, standard interagency agreement vehicles, and the

using agency must supply a multi-year financial commitment to the supplying agency.

7

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g8

2

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

ENABLING TECHNOLOGIES FOR
HIGH-END COMPUTING

Sheila Vaidya, Chair

Lawrence Livermore National Laboratory

Stuart Feldman, Vice Chair

International Business Machines (IBM)

There are two distinct approaches to achieving the performance increases needed by future

high-end computer systems: 1) highly scalable architectures exploiting many-million-way

parallelism, and 2) advanced component technologies with dramatic improvements in criti-

cal properties. Reliance on new or improved technologies to provide significant gains in sys-

tem performance has been a major strategy throughout the half-century history of digital

computer development. Clock rates of 10 KHz in 1950 have increased to 1 GHz in 2000, five

orders of magnitude or a tenfold increase every decade. Even as the first strategy of unprece-

dented parallelism is used to deliver operational capability in the trans-petaflops perform-

ance regime, advanced technologies are required to make such unique system architectures

both feasible to build and practical to operate. In addition to affecting logic switching speed,

technology advances impact memory density and cycle time, logic density, communication

bandwidth and latency, power consumption, reliability, and cost.

Advances include both incremental improvements of existing device types (e.g., embedded

DRAMs) and novel technologies for new component classes (e.g., MRAMs or holographic

storage). In extreme cases, technology advances may inaugurate new computing paradigms

(e.g., quantum computing). The working group considered basic technology and components,

both hardware and software. In particular, it addressed areas that are unique to high-end com-

puting or are unusually stressed by it, and that would not be delivered by the commercial sec-

tor in time to meet the needs of the high-end computing community. While not exhaustive,

several promising opportunities, technical strategies, and challenges to the development and

exploitation of possible future device and component technologies are described.

2.1. Enabling Technologies

2.1.1. Device Technologies
Semiconductor. Essentially all current computing systems are based on complementary

metal oxide semiconductor (CMOS) integrated circuits, and billion-transistor chips will soon

be routinely available. Such progress has been made possible by continuing technological

improvements in semiconductor fabrication: advanced lithography, copper interconnects,

and low-k dielectrics, to name a few. The International Technology Roadmap for

Semiconductors (ITRS) [15] projects that feature sizes will scale down to 22nm by 2016.

9

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

However, key technological enhancements must be emphasized in the near term for added

benefit to high-end computing.

Silicon-On-Insulator (SOI) CMOS promises lower-power integrated circuits. Although there

is industrial interest in this technology for mobile applications, an aggressive scaling of high-

performance SOI-based System-on-Chip (SoC) could prove extremely valuable to HEC as

the chip count/package and, hence, total power dissipated/node, rises. Simultaneously,

device technologies that enable SoC Processor-In-Memory (PIM) architectures must be sup-

ported aggressively. These include smart memories and small-scale, multithreaded multi-

processor concepts, as well as novel three-dimensional device constructs. The latter will allow

building upward on a CMOS SoC underlayer using advanced processing concepts such as

laser annealing.

Furthermore, integration of electro-optical components (based on III-V compounds) on sili-

con — specifically, on-chip lasers for driving optical signals, coupled with fast, intelligent (all-

optical) routers — can be extremely beneficial in building integrated, low-latency backplanes.

A concerted research and development effort in this area, which incorporates advanced

three-dimensional packaging concepts, could significantly benefit the design of high-end

computing systems.

Lastly, because CMOS performance improves at lower temperatures (~77°K) due to both

higher switching speed and lower power dissipation, a variety of low-temperature approach-

es must be evaluated from a cost/performance perspective for possible implementation in

the medium term. Several practical problems related to integration of refrigeration and

maintenance duty cycles must be demonstrated in production prototypes, but the opportu-

nities could be equally significant for high-end computing.

Superconducting Technologies. Superconducting technologies exploit the physical property

that some materials exhibit zero electrical resistance when cooled below a critical threshold

temperature. For niobium on a silicon substrate, this critical temperature is approximately

4°K. Essentially all superconductor logic devices are based on the Josephson Junction (JJ), a

current-driven switching device projecting two states: a zero resistance state and a high

resistance state. Although early work proved disappointing, a new class of superconductor

logic based on the "squid" (a loop of two Josephson Junctions and an inductor), originally

developed for highly sensitive sensors, has yielded dramatic improvements in logic speed

and low power.

Rapid Single Flux Quantum (RSFQ) gates have been demonstrated with switching rates

exceeding 700 GHz. Although today’s manufacturing processes at a micron resolution deliv-

er clock rates in the 20 to 40 GHz range, new sub-micron process technologies could enable

100 and 200 GHz clocks with power consumption of 0.1 microwatt per gate. Development

of these advanced fabrication procedures, as well as accompanying logic and memory archi-

tectures, should be the basis of future, mid-term research and development. (A previous

10

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

point design study, HTMT, demonstrated that a petaflops-scale computer system based on

RSFQ logic would require only 400 square feet of floor space and consume less than one

megawatt of power, including cooling.)

Nanotechnology. In the longer term, beyond the fundamental limits of silicon scaling, radical

changes in materials and processes used for component fabrication may be required. Several

nanotechnologies show promise for improving areal density, data communication, and 3-D

assembly. These could enhance parallel memory access for logic operations, and provide high

interchip bandwidth or inter-board communication as well. MEMS (Micro-Electrical

Mechanical Systems) are one such enabling technology for improving data storage via high

areal density, massive parallelism, and lower power consumption, albeit with slow response.

Researchers believe that 1 terabit/square inch is easily achievable with MEMS, about 30

times that of current magnetic hard drives.

MEMS storage devices are inherently parallel by nature of the optical read/write process. In

addition, MEMS, judiciously deployed, could enable high bandwidth free space optical com-

munication among compute nodes. While MEMS-based optical routing is being explored for

long haul communications, system design studies and tradeoffs for high-end applications are

currently lacking.

Spintronics, the development of devices that harness the spin degree of freedom in materials,

not just their charge, is another important research and development area with a payoff of

roughly ten years. A current embodiment of spintronics is the magnetic random access

memory (MRAM), which is being commercialized by Motorola and IBM/INFINEON as a

replacement for FLASH memory. MRAM is nonvolatile, has the potential of matching

SRAM speeds at DRAM densities, and scales favorably with design rule. The device consists

of two electrically conducting magnetic materials separated by an insulator. When the layer

magnetizations are parallel, the device impedance is low, whereas when they are anti-parallel,

the impedance is high, representing a "1" or a "0" bit.

The use of MRAMs, coupled with CMOS logic in creative configurations to mitigate the

memory performance bottleneck, could have an immediate payoff for the HEC community.

In the longer term, alternate spin-based transistors and light-emitting devices, which are the

subject of sporadic university research in the United States today, could provide novel micro-

architectural building blocks for future HEC.

Alternate nanodevices based on molecular electronics are also being explored at places

such as HP Laboratories to evolve novel fault-tolerant HEC platforms. Some of these

approaches could potentially enable entirely new paradigms in switching, memory, and

system reliability. We urge an increased focus on these areas in order to understand their

capabilities and limitations in a timely manner, since they could revolutionize "conventional"

design concepts in supercomputing platforms.

11

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

2.1.2. Memory Devices
In the very near term, custom silicon integrated circuits for intelligent, adaptable memory

systems — with accompanying middleware and operating system to manage them and com-

piler technology and performance tools to exploit them — could be a valuable asset to both

uniprocessor and PIM organizations, as well as shared memory multiprocessor nodes.

Although prototype intelligent memory systems are being considered (e.g., the Impulse

memory controller), they fall short in coherency management and synchronization control.

The design and fabrication of such custom hardware is impeded by poor profit margins on

such low-volume components. Hence, the need for customized memory-controllers under-

scores a larger problem of making available custom integrated circuits/packages to test possi-

ble design innovations for HEC. Without some means of cost-sharing this expense with the

private sector, progress in optimizing SoC architectures for HEC will be slow and sporadic.

High-end computing demands low-latency, high-bandwidth access to main memory for

many of its applications. While latency tolerance can be built into the SoC, memory band-

width remains by far the most important technological hurdle facing high-end subsystems

today. Hence, for mid-term impact on HEC, it is necessary to aggressively pursue concepts

that: 1) enlarge memory capacity on-chip, in close proximity to the arithmetic operations

(such as three-dimensional integration of memory on CMOS); 2) provide high-speed access

off-chip (waveguide/free space optical interconnects coupled with high-bandwidth WDM-

based smart network topologies); and 3) deliver three-dimensional storage and readout from

main memory (such as MEMS or holographic storage).

2.1.3. Storage and I/O
For some mission applications, the critical resource and performance driver is not the peak

floating point performance or even the main memory bandwidth, but rather the capacity,

speed, and logical accessibility of massive amounts of data. Data sizes of many petabytes,

even approaching exabytes, may be critical for some tasks. Cost-effective storage and rapid

access, as well as reliable storage and communication, will dominate the quality, utility, and

cost at many deployed sites. Even today, the major cost of many systems is for the secondary

storage system rather than the processors. Advanced technologies, which include software,

must be developed over the period of consideration to meet the exponentially increasing

demands for effective data storage and management.

Advanced technologies for low-cost mass storage that have demonstrated promise and

should be aggressively pursued in the mid term include holographic optical storage using

photo-refractive components and spectral hole burning, MEMS, scanning tunneling

microscopy and other e-beam-based techniques, and three-dimensional magnetic storage

using MRAMs. In the long term, molecular electronics may hold the key to the ultimate in

storage density. In the near term, however, better I/O controllers and remote DMA facilities,

in conjunction with improved software technologies for cluster storage access and higher-

level object-based storage systems, could prove extremely invaluable.

12

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

2.1.4. Interconnects
Off-chip interconnection for high-end systems remains our greatest concern. Even today,

off-chip electronic connections are inadequate because they degrade chip clock frequencies

by an order of magnitude or more. Coupled with the ramifications of DRAM speed and

memory organization as well as conventional microprocessor cache hierarchy, sustained sys-

tem performance of 1 to 5 percent of peak is not uncommon in applications that require

high global/local communication bandwidth. As our appetite for bandwidth between mem-

ory and microprocessors grows, it is very likely that new technologies (e.g., optical communi-

cation links with smart network topologies that balance average bandwidth against number

of links) will become mandatory. The following section separates interconnect technology

into two categories and discusses them individually.

Passive Interconnects. Evolution in optical network technology for metropolitan area net-

works is forcing significant changes in both the active and passive components of communi-

cation links. By definition, passive interconnects deploy fixed elements, which implies mini-

mum dynamic network optimization or error correction capability. Conversely, active inter-

connects imply real-time software control, integrated with the loop architecture, to ensure

optimum operation with respect to each of the codependent active components.

A concerted effort to leverage the telecommunication infrastructure for high-end intercon-

nections should include evolving a high-speed serial optical interface for fiber backplanes in

the near term, and high-speed photonic switching in the long term. In the mid term, reliable

wavelength division multiplexing (WDM) fiber or free-space optical interconnects for board

or inter-board communication — interconnecting terascale node boards with packet-

switched, source-routed communication links — can have a tremendous payoff for high-end

platform design. This development should be encouraged, while simultaneously accelerating

component research and development activity from universities into mainstream industry

for system implementation.

Beyond ten years, on-chip optical waveguide clocks are plausible. Again, while such research

activity falls under the purview of basic science, without additional investment of resources

such enhancements could remain an unfulfilled dream for the high-end computing community.

Active Interconnects. The shift from passive to active optical components holds great prom-

ise for increasing network flexibility and robustness. Dynamic wavelength rerouting can pro-

vide operational efficiency and protect against performance degradation. Active modules

can also suppress transients and manage power fluctuations. Furthermore, incorporating

intelligence into the network architecture and using active filters with tunable sources can

increase both flexibility and bandwidth; active compensation of filtering response can allow

for tighter channel spacing.

However, the shift from passive to active interconnects comes with an incremental cost in

research and development that the telecommunications industry can least afford today.

13

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

Hence, the adoption of active networking concepts into the mainstream communication

environment remains slow. Therefore, it is incumbent on the government to aid in screening

and evolving those active interconnect technologies and to facilitate their transition to proto-

types. Specifically, concepts involving intelligent electronic crossbar switches, dynamic net-

work processing on-board, and data vortex constructs lend themselves to near- to mid-term

payoffs, and should be aggressively pursued.

2.1.5. Single Chip Architecture
Emerging semiconductor technology and fabrication processes are integrating CMOS logic

and DRAM on the same silicon semiconductor substrate. This capability enables a new fami-

ly of hardware computing constructs referred to as "single chip architectures." A System-on-

Chip (SoC) integrates a conventional processor core with a complete memory hierarchy,

including one or more levels of SRAM cache and one or more banks of DRAM main memo-

ry. Symmetric multiprocessing (SMP) on a chip co-locates two or more conventional proces-

sor cores on the same semiconductor die with snooping mechanisms for cache coherence

across L1 and L2 SRAM caches private to each processor, and an L3 DRAM cache shared

among all processors. Processor-In-Memory (PIM) positions logic next to DRAM row buffers.

This exposes all bits of a memory block (typically 2048 bits) to low-latency logic for in-mem-

ory processing. In addition, DRAM memory may be partitioned into multiple banks, each

with its own wide logic array, greatly increasing the internal memory bandwidth.

Single chip architectures will play an important role in future high-end systems, providing

smaller packages, reduced power consumption, low latency of access, higher logic density,

higher effective bandwidth, and greater hardware parallelism. They can enable fine-grained,

irregular parallel computing paradigms and reconfigurable circuits for enhanced system per-

formance and reliability. However, future research and development will be required to

improve the performance characteristics of the basic storage and logic devices, to increase

density and decrease power consumption further, and to devise new architectures — perhaps

adaptive, possibly deploying asynchronous logic — that can best exploit this new capability.

2.1.6. Power/Thermal Management and Packaging
Both users and vendors are increasingly concerned with reducing power consumption,

decreasing footprints, and managing the heat generated in large-scale computing environ-

ments. Based on the ITRS roadmap [15], high-performance CMOS processors will generate

120 to 200 watts of heat by 2009. ASCI Purple, projected at 100 peak teraflops, is expected to

consume 5 megawatts of power, plus an additional 3.5 megawatts for cooling and power

management. Future high-end systems will co-locate hundreds of integrated circuit chips,

running at higher clock rates, with RF, MEMS, and other optical components. Thus, minimiz-

ing floor space and power are important imperatives not only for machines serving the

national security community, but also for future servers and workstations that service the

private sector. Research in novel heat dissipation and packaging methodologies must closely

parallel developments in system architecture and device design.

14

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

Some commercial directions (e.g., lower chip voltages, dynamic power management on chip,

and operating system optimization) are already being tapped. More aggressive cooling

methodologies that deploy evaporative film boiling or spray cooling of devices with low-boil-

ing-point inert fluids need to be exploited at the full-scale system level in the near term.

Commercial manufacturers have avoided incorporating liquid cooling technologies due to

the up-front financial burden of technology change as well as customer discomfort.

However, a step function away from forced air cooling will be necessary as we invoke higher-

density packaging (2.5-D initially, where a few layers of active components are stacked atop

each other) for faster and shorter connectivity.

In the longer term, true 3-D packaging will be needed to achieve shorter latencies and

enhanced raw computing capability. New concepts will be required, some of which could be

borrowed from other applications. For example, micro-channel cooling, which relies on single

phase liquid convection in silicon micro-channels, can dissipate heat fluxes on the order of

kilowatts/cm2. This technology has been lifetime-tested and is in use for cooling three-

dimensional stacks of high-performance AlGaAs laser diode arrays. The concept could be

adopted for high-end subsystems, coupled with active temperature control (i.e., dynamic

management of device temperatures to monitor hot spots, which could be compensated for

by changing local clock speeds and reallocating workloads). However, development resources

will be necessary to assess the feasibility of these concepts, especially in light of the concomi-

tant requirement of vertical interconnects for data communication through these packages.

Fundamental research is needed to progressively improve the computing power per watt cri-

terion as systems grow in scale. Moreover, within ten years, the current semiconductor

roadmap for operations/watt flattens. Because the demand for total operations per second

will continue to rise, breakthroughs in devices and packaging will be essential to deliver plat-

forms with adequate manufacturability.

2.1.7. Software Methods and Algorithms
In addition to hardware technologies, new fundamental advances in software technologies

are necessary to enable and exploit effective petascale high-end systems. Major advances are

required in both application techniques and resource management software methodologies.

Principal directions for future research and development in software technology for HEC

are considered below. Other working groups also considered these issues in their discussions

(see chapters 5 and 6).

Parallel Algorithms. Future petascale computers will require billion-way parallelism to

achieve their performance goals. Hence, new classes of algorithms will be required that

expose high degrees of parallelism, including intrinsic fine-grain parallelism, to the compiler

and system hardware. In addition, the overhead for communication and synchronization

must be sufficiently low to permit lightweight threads to function efficiently. If future high-

end systems are to succeed, advanced algorithmic techniques must be devised that incorpo-

rate these properties for a wide range of important applications.

15

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

Runtime and Operating Systems. Operating system software has changed little over the past

two decades, although research continues. Microprocessor-based massively parallel processors

and clusters, combined with Unix and Linux, have defined the status quo for an extended

period. New generations of high-end systems incorporating many millions of execution sites

and distributed shared memory — and perhaps message-driven, lightweight, transaction pro-

cessing with multithreading hardware support — will demand an entirely new class of

resource management and task supervisor software.

Simple local support routines, synthesized into a single system image, global master control

program (MCP), may be based on the synergism of semi-independent agents that monitor

and react to changes in system state and status employing methods like introspective threads.

Such new environments would be highly robust because the failure of any one agent,

and/or its underlying local hardware support, would not imply the failure of the entire sys-

tem. Research is required to develop this new generation of system management and run-

time software technology.

High-Level Languages and Compilation. Today’s parallel computers are difficult to pro-

gram using conventional models, techniques, and tools. Future many-million-way parallel

petascale computers will become almost impossible to program without significant

advances in programming methodology and technology. One aspect of this will be new,

very-high-level formalisms or programming languages that facilitate the capture of the user-

defined functions with a minimum of effort, while also exposing algorithm characteristics

of parallelism and affinity (temporal and spatial locality). Such frameworks must enable

the rapid integration and reuse of distinct program modules that were not necessarily writ-

ten to form a single program.

To make this possible, extended methods like the common component architecture (CCA)

discipline must be developed to guarantee computation that is easy and effective, coopera-

tive and coordinated. Compilation strategies and tools must be devised that expose and man-

age both parallelism and affinity, while coordinating with the services provided by future

runtime system software. Both future languages and compiler technology must include facil-

ities for performance and correctness debugging.

2.2. Summary of Strategic Findings

From the wealth of facts and considerations derived from this important community forum,

several key observations emerged that should be incorporated in any planning of future

high-end system procurement and development. The most significant among these are pre-

sented below.

Areas currently raising concerns that are likely to remain challenging for many years to come

are the management of power and improvements in interconnection performance. We urge

considerable investment, in both the short and medium term, in these areas.

16

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

Seymour Cray famously stated that his main contributions to supercomputing were related

to "plumbing." Managing heat and reducing power use continue to be major problems.

Almost by definition, high-end computing calls for larger numbers of computing devices

than more common installations, exacerbating traditional problems.

Many computations are limited by the bandwidth and latency among chips, boards, and

chassis. Numerous forms of fast networking and interconnects have been examined, but

most commercial computers do not yet require a shift to optical interconnects. We consider

research and development in this area to be a very high priority. There are many types of

computations that are fundamentally limited by interconnect delays because they cannot fit

all of the necessary information into on-chip memory.

In addition, a variety of new device technologies and three-dimensional integration and pack-

aging concepts show promise for ameliorating the problems with interconnect bandwidth

and heat dissipation. We urge that attention be focused on these to advance them to the

stage of system feasibility and prototype.

Looking further into the future, there are many novel devices based on superconducting

technologies, spintronics, photonic switching, and molecular electronics that are exciting and

can be game-changers for HEC. However, it is much too early to choose just a few, and we

urge a broad, consistent, long-term research agenda to incubate and test these ideas in prepa-

ration for future generations of systems.

Some important software approaches require system demonstration to assess their impor-

tance. The purpose of HEC is to solve new computationally intensive problems, cost-effec-

tively and expeditiously. Approaches that fundamentally address the time to solution

through better shared computing models and libraries, coupled with real-time performance

monitoring and feedback, are needed to achieve the promise of high-end computing.

2.3. Enabling Technology Roadmap

2.3.1. Time Scales and Investments
Radical technologies require both time and investment before they become practical for

incorporation into major systems. We believe that one of the key roadblocks to greater

progress in HEC capability has been the sporadic investment in its future. Therefore, we call

for a continuous pipeline of research and development resources to nucleate new ideas and

to move forward — from concept into product — those ideas that solve specific problems fac-

ing high-end computing,. A key point driving our conclusions was the practical time scale

and costs involved in introducing radical, or even significantly changed, technologies into

large-scale systems.

Because of the complexities of market dynamics and the limited demand for high-end com-

puting, it is difficult for a new and enabling concept to appear in a full-scale, high-end system

17

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

in less than 7 to 10 years, if at all. Hence, we recommend a focused parallel effort that

explores technology relevance to other industrial applications to accelerate their early adop-

tion into production prototypes. This could be enforced by, for example, including in our

assessment application suite some complex aircraft design or automobile crash simulation

codes that could benefit from optimized HEC capability. This would expand the market

need and would help to leverage government investments with private sector funds as the

systems became available.

In terms of nomenclature, we have assumed that any technology that will appear in full-scale

deployments (large-scale systems in production use) by 2009 already exists and has been test-

ed in subsystems, not just on the laboratory bench. Clearly, variations will be needed for inte-

gration into high-end computing. This is what we are calling out as a near-term investment

need. The themes here are few, but they demand immediate attention. Mid term takes us into

the next phase where concepts have been proven/invented and their usefulness to high-end

computing established. However, system embodiments must be built and tested and their

scaling implications must be assessed. These capabilities will only be available in high-end plat-

forms in the next decade. Here, many more possibilities exist. These should be studied in pilot

environments where cross interactions can be analyzed. This calls for additional resources.

Of course, several technologies are being explored that could enable novel systems approach-

es. It is far too early to pick winners amongst these. Instead, a broad set of initiatives should

be funded with periodic checkpoints that can separate the likely winners in key areas.

2.3.2. Key Technologies
Based on working group discussions, Table 2.1 summarizes the group’s assessment of technol-

ogy evolution and development during the next fifteen years.

18

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g 19

FY05–FY09 FY10–FY14 FY15–FY19
Devices

Silicon on Insulator Low temperature CMOS Nanotechnologies
Si-Ge Superconducting RSFQ Spintronics
Mixed III-V devices
Integrated electro-optic and
high speed electronics

Memory
Optimized memory hierarchy 3-D memory (e.g., MRAM) Nanodevices
Smart memory controllers Molecular electronics

Storage and I/O
Object-based storage Software for cluster Spectral hole burning

storage access
Remote DMA MRAM, holographic, MEMS, Molecular electronics

STM and E-beam
I/O controllers (MPI, etc.)

Interconnects
Optical system area networks Active networks Scalability (node density

(fiber-based) and bandwidth)
Serial optical interface High-density optical

networking
Electronic crossbar switch Optical packet switching
Network processing on board Data vortex

Superconducting crossbar
switches

Single Chip Architectures
Power efficient designs Adaptive architecture
System-on-Chip (SoC) Optical clock distribution
Processor-in-Memory (PIM) Asynchronous designs
(e.g., Caltech MIMD)
Reconfigurable circuits
Fine-grained irregular
parallel computing

Packaging and Power
Optimization for power 3-D packaging and cooling Higher scalability concepts
efficiency (e.g., microchannel) (improving operations/watt)
2.5-D packaging Active temperature control
Liquid cooling (e.g., spray)

Software and Algorithms
Compiler innovations for Very high level language
new architectures hardware support
Tools for robustness (e.g., Real time performance
delay and fault tolerance) monitoring and feedback
Low overhead coordination Parallel Random Access
mechanisms Machine model (PRAM)
Performance monitors
Sparse matrix innovations

TABLE 2.1 Enabling Technology Opportunities

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g20

3

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

COTS-BASED ARCHITECTURES

Walt Brooks, Chair

NASA Ames Research Center

Steven Reinhardt, Vice Chair

SGI

Commodity off-the-shelf (COTS) components are currently used to construct a wide vari-

ety of commercial and custom high-end computing systems. The working group's charter

focused on COTS-based systems, rather than on systems composed solely of COTS compo-

nents. Based on this, we defined COTS in three overlapping but non-identical ways. The first

definition considered technologies intended for enterprise or individual use (e.g., commodity

processors, memories, and disks). The second considered technologies that require such a

large investment to replicate that the high-end community must exhaust every possibility of

using the commodity components before building specialized components for high-end sys-

tems. The third considered technologies whose evolution is largely determined by other mar-

kets; the HEC market has little influence over these. The working group's bias was that appli-

cation needs must be met by the systems delivered (whether COTS-based or custom), and

that COTS deficiencies be viewed as challenges to be overcome rather than as systems with

constrained capabilities.

We considered the roadmap of the capabilities of the COTS-based system architectures

anticipated through the end of the decade. This roadmap identified the critical hardware

and software technologies and architecture developments required, both to sustain contin-

ued growth and to enhance user support. Although current COTS-based systems are well

suited to a variety of important problems, the group concentrated on their shortcomings for

addressing key problems of national interest.

3.1. Enabling Technologies

Currrent COTS-based systems typically contain a small non-COTS component, often limit-

ed to the network interconnect (e.g., Myrinet or Quadrics). Although these systems are suit-

able for a variety of tasks, the working group believes that COTS-based systems can address a

wide range of application needs by the inclusion of existing or imminent technologies. Our

vision is of a computing fabric incorporating a heterogeneous set of computing devices. In

addition to COTS-based processors and their associated memories, we expect COTS-based

systems to include improved interconnects and support for reconfigurable computing.

The advent of memory-class ports into microprocessors will permit implementation of high-

er-bandwidth, lower-latency interconnects. Coupled with other technology advances (e.g.,

higher-speed signaling and higher-radix routers), interconnection networks with higher

21

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

bandwidths and flatter topologies will be practical. However, as the working group address-

ing enabling technology noted in chapter 2, realizing these advances will require continued

investment.

Initially implemented via field programmable gate arrays (FPGAs), reconfigurable or applica-

tion-specific computing will embed specialized functions, application kernels, or alternate exe-

cution models (e.g., fine-grain multi-threading) in an optimized yet malleable form. Moreover,

we believe functions with broad appeal to HEC applications (e.g., global address space or collec-

tive operations) will be implemented in system ASICs (application specific integrated circuits).

Based on working group discussions, these and allied topics are discussed below.

3.1.1. Memory Systems and Interconnects
We must increase memory bandwidth and provide mechanisms for using it more effective-

ly. High-end computing applications are typically more demanding of memory bandwidth

than the commercial workloads that are the optimization target for COTS processors.

Simply put, the memory bandwidth on current and projected COTS processors is not

increasing fast enough.

Despite the economic realities, the HEC community should influence the vendors of COTS

processors to provide higher-memory bandwidth, recognizing that changes will take 3 to 5

years to appear in commercial products. Outside the processor itself, we should investigate

new computational structures that exploit scarce processor-memory bandwidth as effective-

ly as possible. Examples include moving specific functions (e.g., reductions or fast Fourier

transforms (FFTs) into ASICs or FPGAs.

Like memory systems, the bandwidth and latency of today’s interconnection networks limit

application performance. To redress this problem, two approaches are required. First, we

must increase the bandwidth of links and routers and use higher radices in routers. The

bandwidths required will not be funded by the non-HEC commercial market, but can be

developed by HEC-focused vendors.

The second approach must exploit memory-class mechanisms for processor communication

with remote nodes. This is in contrast to current commodity I/O-class mechanisms, whose

latency and bandwidth do not support HEC needs. Fortunately, some recently developed

COTS processors use point-to-point links for memory connection. (AMD's Opteron proces-

sor and its HyperTransport links are an example of this node architecture, with similar abili-

ties expected from other COTS vendors.) These provide the needed ports and a new oppor-

tunity for system architecture design.

3.1.2. System Heterogeneity
HEC applications span a broad spectrum with a diverse set of resource demands. Because

matching each portion of an application to its execution target (ASICs, FPGAs, or multiple

22

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

processor types) can yield better overall performance, we must provide architectures that

support heterogeneous elements in the system fabric. ASICs implement performance-critical

functions that are used by numerous applications.

FPGAs can be reconfigured to accelerate those portions of application code that have the

greatest computational intensity or need special functions. However, programming tools for

FPGAs must improve greatly if FPGA use is to become more widespread. A multiplicative

benefit of supporting FPGAs is that the ability to rapidly reconfigure functionality could

accelerate the rate of HEC architectural research. Lastly, support for multiple processor types

would allow HEC-optimized processors to perform I/O through COTS processors and their

mass-market I/O adapters.

3.2. Summary of Strategic Findings

Two critical findings emerged from the working group discussions. We believe their implemen-

tation could accelerate and enhance the use of COTS-based technologies in high-end systems.

3.2.1. Government Coordination
We must develop a government-wide, coordinated method for influencing vendors. The

HEC influence on COTS components is small, but it can be maximized by engaging vendors

on approaches and ideas five years or more before commercial products are created. Given

these time scales, the engagement must also be focused and sustained.

We recommend that academic and government HEC groups collect and prioritize a list of

requested HEC-specific changes for COTS components, focusing on an achievable set. This

process should also investigate commercial needs to identify overlaps with HEC; this will

increase the alignment between the COTS manufacturers and HEC needs. To the extent

that HEC needs do not overlap with commercial needs, the government should fund the

COTS vendors to make these changes.

Vendors of COTS-based HEC systems can address some of HEC’s key technology needs in

their systems. They may be more easily influenced than the COTS vendors themselves.

Again, early focused government funding will likely be necessary to ensure robust imple-

mentations of innovative technology.

3.2.2. Long-Term Research Funding
We must fund long-term research on the key technologies needed for future high-end sys-

tems. We expect the current situation, where COTS components often meet HEC’s key

requirements poorly, to persist indefinitely. To combat this, a comprehensive research agenda

is needed to mitigate component shortcomings and develop those key technologies that

could be incorporated by the COTS manufacturers. Beyond the research funding itself, aca-

demic researchers need access to HEC-scale systems to test new ideas in realistic situations.

23

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

Once ideas are proven in a research setting, the best ones must be incorporated into produc-

tion systems by an intentional process, such as vendor funding discussed earlier.

Whereas development-stage actions are crucial, government must continue its role as the pri-

mary early adopter for high-end systems. This step is essential to reduce the risk for COTS-

based vendors, as the capital cost of the largest high-end systems will not be borne by the

vendors. The government should not only procure the systems, but also actively use the

innovations to address problems of agency interest in order to understand their utility.

3.3. Other Challenges

3.3.1. Parallel Processing
Today’s COTS processors have inadequate support for parallel processing. Although a few

key shortcomings could be addressed by the recommendations above, we believe a more

strategic approach would be to diffuse the use of parallel processing across the broad com-

puting market. This step has the advantages of providing the benefits of parallelism to a

greater audience, increasing the economic benefit to the nation, causing the mainstream mar-

kets on which the COTS manufacturers concentrate to be better aligned with the needs of

high-end computing.

While this statement is simple, its implementation is not. Current methods commonly used

for parallel programming are not suitable for use by non-experts. Much simpler interfaces

for using parallelism must be devised. Without the motivation and expertise of the high-end

computing community, this is unlikely to happen. This indirect influence on the COTS ven-

dors can be strategic, but it is likely to take ten to fifteen years to bear fruit.

3.3.2. Scalable Software and Tools
There are also several areas where work is required to increase the scalability of software and

tools needed for efficient use of very-large-scale systems. Linux must scale to support systems

with 10,000 processors, and file systems also must scale to support systems with exabytes

(1018) of storage. Similarly, compilers are needed that can generate efficient code for the het-

erogeneous architectures described above. Lastly, programming interfaces with lower over-

head than MPI must be devised to enable scaling of very large numbers of processors.

24

4

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

CUSTOM ARCHITECTURES

Peter Kogge, Chair

University of Notre Dame

Thomas Sterling, Vice Chair

California Institute of Technology

As others have noted, there are two strategies for achieving the high-end computer systems

of the future: COTS-based systems and custom-enabled computer architecture. COTS-based

parallel system architectures exploit the development cost and lead-time benefits of incorpo-

rating components — including microprocessors, DRAM, and interface controllers developed

for the mainstream computing market — in highly replicated system configurations. The

working group considered the opportunities, technical strategies, and challenges to realizing

effective computing performance across the trans-petaflops regime through possible custom-

enabled, high-end computer architectures.

Custom-enabled architectures are designed expressly for integration in scalable parallel struc-

tures to deliver substantially higher performance, efficiency, and programmability than

COTS-based systems, while requiring lower power and less space. Both approaches are likely

to lead to petascale performance before the end of this decade, but may exhibit very differ-

ent operational properties as they are deployed and applied to compute and data-intensive

applications critical to national security and commerce.

4.1. Custom-Enabled Architecture

A custom, high-end computer architecture is one that has many of the following charac-

teristics:

• Its major components are designed explicitly to be incorporated in highly scalable sys-

tem structures, and operate cooperatively on shared parallel computation to deliver high

capability, short time to solution, and ease of programming.

• It is balanced with respect to rate of computing, memory capacity, and network commu-

nication bandwidth.

• It exploits performance opportunities afforded by device technologies through innova-

tive structures that are not taken advantage of by conventional microprocessors and

memory devices.

• It incorporates special hardware mechanisms that address sources of performance degra-

dation typical of conventional architectures, including latency, contention, overhead,

and starvation.

25

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

• It supports improved parallel execution models and assumes more responsibilities for

global management of concurrent tasks and parallel resources, significantly simplifying

programmability and enhancing user productivity.

Even though specialized devices are key to the success of the strategy of custom architec-

tures, COTS components are and should be employed where useful when performance is

not unduly sacrificed.

There is a wide range of possible custom parallel architectures, varying both in strategy and

generality. In all cases, the objectives of their development are to:

• enable the solution of problems we cannot solve now, or of much larger versions of

problems that we are currently solving on conventional COTS-based systems through

dramatic capability improvement;

• deliver performance that is orders of magnitude better with respect to cost, size, and

power than contemporary COTS systems at the performance scale for which they were

designed; and

• significantly reduce the time to solution through both execution performance and

enhanced programmability.

4.1.1. Strategic Benefits
By their nature, custom architectures promote a diversity of architecture by relaxing the

constraints of system design imposed by conventional COTS microprocessors, and open

opportunities for either alternative or point-design solutions to high-end computing prob-

lems that are far more efficient than currently possible. Their peak operation throughput

and internal communication bandwidth for a given scale system may exceed equivalent

attributes of conventional systems by one to two orders of magnitude, overcoming what are

often referred to as the roadblocks facing current technology. Overall system efficiency may

be increased by up to an order of magnitude or more for some challenging classes of applica-

tions by means of hardware mechanisms devised expressly for efficient control of parallel

actions and resources.

Enhanced programmability is a product of reduced barriers to performance tuning and elim-

ination of many sources of errors, thus simplifying debugging. By efficiently exploiting pro-

gram parallelism at all levels through superior execution models, efficient control, and suffi-

cient global communication bandwidth, custom architectures exhibit high scalability to

solve problems of national importance that may be unapproachable by more conventional

means. Custom architectures permit a computing capability with much greater density than

conventional architectures, yielding potentially dramatic reductions in power, size, and cost.

Lastly, custom architectures may be the only way to achieve sufficient reliability through

fault tolerant techniques for systems beyond a certain scale, which may be crucial to realiz-

ing systems in the mid to high levels of petaflops scale.

26

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

4.1.2. Challenges
Despite the promise of custom-enabled HEC architectures, there are significant challenges to

realizing their potential. Foremost is the fact that — while conventional systems may exploit

the economy of scale yielded by the COTS components’ mass market — custom architec-

tures, at least initially, will have only a limited market; therefore they will have fewer devices

across which to mitigate development and non-recurring engineering (NRE) costs. Thus, the

benefits achieved through custom design must be able to outweigh the higher per-chip price.

The longer development time is also important because a larger part of the system needs to

be designed from scratch than is the case for the COTS-based counterparts. One conse-

quence of this is that technology refresh is less frequent for custom system architectures.

There is also the challenge of user acceptance resulting from incompatibilities with standard

platforms and the need to develop new software environments to address this. Difficulty in

porting legacy applications, combined with the need for programmer training in the use of

the new execution models and tools supported by the custom systems, can present addition-

al barriers to both users and potential vendors. Lastly, any new system initially is unproven in

the field and involves real risk to the earliest users. The introduction of any new and innova-

tive custom system must overcome these challenges to be successful.

4.2. Summary Strategic Findings

From the wealth of facts and considerations derived from this important community forum,

several key observations emerged from the consensus that should be considered in any plan-

ning of future federal programs for HEC procurement and development. The most signifi-

cant ones are discussed below.

4.2.1. Advantages
Custom-enabled architectures offer significant advantages in performance and programma-

bility compared with COTS-based systems of the same scale and deployment time for

important classes of applications. A performance advantage of between 10X and 100X is

expected through a combination of high-density functionality and dramatic efficiency

improvements. A programmability advantage of twofold to fourfold is possible through

either the elimination or reduction of programmer responsibility for explicit resource man-

agement and performance tuning, and through advanced execution and programming mod-

els providing a reduction of sources of parallel programming errors. Significant advantages in

performance to cost are expected to be yielded from the high-density packaging, low-power

structures, and greater up time from intrinsic fault tolerance mechanisms.

4.2.2. Near- and Medium-Term Opportunities
Multiple technical approaches that offer significant promise for custom-enabled architec-

tures have been identified that can be realized in the near and medium term. With necessary

funding, these will accelerate computing capability and permit the United States to regain

preeminence in the field. Proof of concept of more than one such innovative architecture is

27

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

feasible within the next five years, and petaflops-scale computer systems can be deployed

substantially before the end of this decade.

4.2.3. Strategic Partnerships
Exploiting these opportunities, so important to U.S. national security and commerce, will

demand new partnerships among industry, universities, government laboratories, and mis-

sion agencies. To succeed, such alliances must be coordinated in such a way that the

strengths of each institution complement the limitations of the others. Industry provides the

principal skills and resources to manufacture complex computing systems, but lacks the

motivation to explore high-risk concepts. University research groups devise and investigate

innovative directions that could lead to future system types, but lack the resources or organi-

zation to carry them through to a useful form.

The national laboratories have the expertise of using the largest high-end computers for

major applications of importance to the national welfare, but do not develop the computing

engines that they use. The federal agencies have both the requirements and the resources to

enable future useful systems to be invented, evaluated, and (if warranted) deployed, but

have at best only limited abilities to help steer commercial technologies to niche markets

such as HEC. No one side of the community can realize the opportunities of future custom

architecture alone, and a new class of peer-to-peer partnering relationship is necessary to

restart the HEC research pipeline with new ideas, faculty, and graduate students.

4.2.4. Funding Culture
The current funding culture is incapable of enabling or catalyzing the revitalization of the

HEC industry and research community. The narrow short-term specifications, limited

(even single-year) time frames, inadequate budget levels, insufficient guarantees to indus-

try as friendly customers, and conflicting objectives across agencies have dissipated the

means and will of the HEC community to attempt to provide anything but incremental

advances to conventional COTS-based systems, leaving future innovation to foreign sup-

pliers. The resulting soft money mentality has largely eliminated research incentive. It has

also been disruptive to national initiative compared with the Japanese, whose programs

produced the Earth Simulator and are likely to deliver the first petaflops-scale computer

within the next two years.

4.2.5. Innovation in System Software and Programming Environments
While it is the finding of this working group that the exploitation of custom architectures

devised for the explicit purpose of scalable parallel computing is imperative to achieve the

full potential of the foundation technologies, it is also clear that this alone is insufficient

in meeting the goal. Both system software and programming environments must be devel-

oped to support and exploit the capabilities of the custom architectures. System software

must be developed to provide the dynamic resource management anticipated by many of

these architectures to improve performance efficiency and remove much of the burden

from the programmers.

28

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

Programming environments must be developed that capture and expose intrinsic algorithm

parallelism for greater performance, and provide high-level constructs to eliminate low-level

and error-prone detail to minimize application development time. In addition, effective soft-

ware means must be provided to enable rapid porting of legacy applications and libraries to

maintain continuity of the user software base. The creativity of future software and pro-

gramming models must match the creativity in custom HEC architecture. The required

investment in software development is likely to exceed that of the custom architecture by at

least fourfold (some would estimate it at tenfold).

4.2.6. Application Requirements Characterization
Future petascale architectures, whether custom or COTS-based, will run applications of sub-

stantially larger scale and complexity than those performed on current generation massively

parallel systems and clusters. In some cases, entirely new applications and/or algorithms not

even attempted in the current environment may become important users of future systems.

Therefore, there is little (almost none) quantitative characterization of the actual system

requirements of these future systems. Against the expected sources of user demand for such

systems, it has not been determined with any certainty what the resource needs will be for

memory capacity, network bandwidth, task parallelism control and synchronization, I/O

bandwidth, and secondary storage capacity.

It is a finding of this working group that comprehensive application studies need to be under-

taken to establish quantitative system criteria sufficient to satisfy future agency demands for

application performance. This is critical to the development of custom architectures, as it will

establish capabilities, capacities, and correct balance for future system resources. These same

results will benefit the development of COTS-based architectures as well.

Coupled equally with this is the need to convert these requirements into real metrics that

allow HEC customers to adequately decide what they want and how they know that they

have received it. Peak floating point operations per second (FLOPS), for example, is not

enough; neither is percent efficiency, certainly not the SPECfp benchmark. A current

DARPA-sponsored effort has begun to explore these issues, but to do it correctly will involve

a broader discussion across the whole community.

4.2.7. Basic Research for the End of Moore’s Law
It is expected that by 2020 the exponential growth in the density of silicon semiconductor

devices, usually attributed to Moore’s Law, will have reached a plateau, and that a significant

reduction in the rate of performance growth due largely to silicon technology may be experi-

enced as early as 2010 or shortly thereafter. Beyond that period, continued growth in system

performance will be derived primarily through brute force scale, advances in custom com-

puter architecture, and incorporation of exotic technologies. In this latter case, architecture

advances will be required to best assimilate such novel materials and adapt computing struc-

tures to their behavioral properties.

29

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

Therefore, basic research needs to be initiated in the near future for custom architectures

that will be prepared for the end of Moore’s Law and the introduction of alien technologies

and models. It is expected that there is the potential for significant trickle-back to silicon-

based semiconductor system architecture, even before the time when such innovations in

architecture will become imperative.

4.3. Technical Directions for Future Custom Architectures

Despite a period of limited funding for HEC computer architecture research, a number of

paths have emerged that hold real potential; these may provide gains of one to two orders of

magnitude in several critical dimensions with respect to conventional architecture and prac-

tices using current or near-term technologies. Further, it is clear that these gains will continue

to prevail, at least through the end of the decade, by means of architectural and complement-

ing system software, benefiting proportionally from enhanced semiconductor technology

improvements governed by Moore’s Law. This section documents key technical opportuni-

ties and potential advances that will be delivered by custom architecture research, should

such work be adequately funded.

4.3.1. Fundamental Opportunities Enabled by Custom Architecture
Custom architecture uniquely is able to exploit intrinsic and fundamental opportunities

implicit in available or near-term underlying technologies through innovative structures and

logical relationships. Some of the most important ones are suggested here.

Function-Intensive Structures. The low spatial and power cost of VLSI floating point arith-

metic and other functional units permits new structures incorporating many more such ele-

ments throughout the program execution and memory service components of future paral-

lel system architectures. Organizations comprising 10X to 100X more functional units with-

in a corresponding scaled HEC system are feasible in the near term, assuming logical control

and execution models are devised that can effectively coordinate their operation.

Enhanced Locality. Communication is a major source of performance degradation, whether

global across a system or local across a single chip. It is also a major source of power consump-

tion. Custom architectures present the opportunity — through innovative structures to

address both scales of communication, even to a significant degree in some cases — to signifi-

cantly increase the ratio of computation to communication.

Exceptional Global Bandwidth. Custom HEC system architectures are distinguished from

their COTS-based counterparts by interconnecting all elements of the distributed system

with exceptional global bandwidth and at relatively low latency. In so doing, custom archi-

tectures can significantly reduce several sources of performance degradation typical of con-

ventional systems, including contention for shared communication resources, delay due to

transit time of required remote data, and overhead for managing the global network.

Depending on the system used as a basis for comparison, improvements can easily exceed

30

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

10X and approach 100X. Such global bandwidth gains not only improve performance; they

can also greatly enhance the generality of high-end systems in supporting a wide range of

application/algorithm classes, including those that are tightly coupled, are communication

intensive, and involve substantial synchronization. Increased bandwidth also improves archi-

tecture scalability.

Architectures That Exploit Global Bandwidth. Bandwidth alone, although a dominant

bounding condition on system capability, is insufficient to guarantee optimal global per-

formance. In addition, custom architectures must incorporate means to support many out-

standing in-flight communication requests simultaneously and, if possible, permit out-of-

order delivery. This requires a combination of methods, including special lightweight mecha-

nisms for efficient management of communication events and higher-level schema for repre-

senting and managing a high degree of computation parallelism. With high concurrency of

demand and low overhead of operation, the raw exceptional capacity of custom global inter-

connection technology and network structures may be effectively exploited.

Efficient Mechanisms for Parallel Resource Management. A repeated requirement govern-

ing many aspects of HEC system operation is efficient mechanisms for the management of

parallel resources and the coordination of concurrent tasks, especially at the fine-grain level.

Fine-grain parallelism, which is crucial to scalability of future petaflops systems, can only be

exploited if the mechanisms responsible for their operation and coordination are fast

enough that the temporal overhead does not overwhelm the actual useful work being per-

formed. Custom HEC architecture has the unique advantage of being able to incorporate

such hardware-supported and software-invoked mechanisms employed for global parallel

computation.

Advanced ISA. To facilitate the control of widely distributed and highly parallel HEC sys-

tem architectures, the semantics of parallel operation needs to be reflected by the instruction

set microarchitecture. This is only possible through custom design of the system and

microarchitecture. Otherwise, all responsibilities of managing concurrency of resources and

tasks must be emulated through software, often requiring egregious use of synchronization

variables and the overhead that entails. There are also classes of operations that — while not

particularly important to general commercial computation and therefore not usually found

as part of COTS microprocessor instruction sets — nonetheless can be very important to

scientific/technical computing, as well as to the mission critical computations of defense-

related agencies. Custom architecture may provide optimized instructions for these and

other purposes that will never be available from COTS-based systems.

Execution Models That Facilitate Compiler/Programmer Application. Beyond the specifics

of instructions and components, the overall operational properties of a highly scalable, effi-

cient, and programmable parallel computing system are governed by an abstract schema for

defining the relationships among the actions to be performed and the data on which they

are to operate. In an actual parallel computer, such a representation formalism is manifest as

31

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

an execution model that determines the emergent behavior of the system components in

synergy with support of the user application. The execution model establishes the principles

of control and is supported by the instructions, mechanisms, and system structure. It enables

the compiler and programmer to effectively employ the capabilities of the resources com-

prising the system. A COTS-based system is extremely limited in the choices of execution

models because they fail to provide the needed underlying functionality.

4.3.2. Examples of Innovative Custom Architectures
The working group identified several concepts for innovative custom architectures and

examined their specific characteristics and advantages. Each concept incorporates structures

and strategies that exploit one or more of the potential opportunities previously discussed.

An incomplete set of examples of possible innovative custom architectures is presented in

this section.

Spatially Direct-Mapped Architecture. An important strategy to achieve high density of

functional units, low latency between successive operations, high computation to communi-

cation, and low power consumption is to enable structures of functional units and their

interconnection paths to closely match the intrinsic control flow and data flow of the appli-

cation kernel computation. There are several ways to do this, and the different strategies vary

in their flexibility and efficiency. The "spatially direct-mapped architecture," also referred to

as "adaptive logic" or "reconfigurable logic," comprises an array of logic, storage, and internal

communication components whose interconnection may be programmed and changed rap-

idly, sometimes within milliseconds. The goal (and reason for the term "spatial") is to allow

us to compile not to a temporal sequence of ordered instructions, but to a spatial surface

through which the data flow.

Vectors. Vector processing exploits pipelining of logic functions, communication, and mem-

ory bank access to exploit fine-grain parallelism for efficient high-performance computation.

It provides a class of efficient fine-grain synchronization, the potential of overlap of commu-

nication with computation, and reduced instruction pressure. While best at exploiting dense

unit stride accesses, additional mechanisms permit rapid gather scatters across access patterns

that vary more widely. The vector model has been successfully exploited since the 1970s, but

new implementation strategies are emerging that will extend its capability through innova-

tive architectures.

Streaming. Streaming architectures are being proposed as an innovative strategy for provid-

ing a very-high-density logic architecture with full programmability. Wide and deep arrays of

arithmetic functional units are interconnected with intermediate result data transiting

through the array driven by a software/compiler-controlled communication schedule. Very

high computation to communication can be achieved for certain classes of algorithms,

exhibiting a high computation rate and low power.

32

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

Processor-in-Memory. Processor-in-Memory (PIM) architecture also exploits a high degree of

logic density, but in a form and class of structure very different from those of vectors,

streaming, and spatially direct-mapped architectures. Instead, PIM merges arithmetic logic

units with memory in such a way that the logic is tightly coupled with the memory row

buffers. With access to the entire row buffer, wide ALUs can be employed to perform multi-

ple operations on different data within a single memory block at the same time. The total

memory capacity of a memory chip may be partitioned into many separate units, potentially

exposing greater than 100X memory bandwidth at low latency for data-intensive low/no

temporal locality operation.

Special Purpose Devices. Special purpose devices (SPDs) are hard-wired computational

structures that are optimized for a particular application kernel. They take advantage of the

same mapping attributes as spatially direct-mapped (reconfigurable) architectures. But they

are able to exploit very-high-speed technology and provide much greater logic density to

deliver significantly greater performance per unit area and lower power per computing

action. SPDs such as systolic arrays have a long history of development and are particularly

useful for post sensor and streaming data applications. The world’s fastest (unclassified)

computer, GRAPE-6 [13], to be deployed within the next two years, is of this type, and it is

likely that the first petaflops-scale computer will be a derivative of this architecture. An

important limitation of SPDs is, as their name implies, that they are limited in the range of

computations that any one of them can perform.

4.3.3. Enabling and Exploiting Global Bandwidth
Custom architectures may be distinguished from their COTS-based counterparts in part by

enabling exceptional global bandwidth and its effective exploitation. Global networks for

future HEC custom systems may exhibit bi-section bandwidth that is an order of magnitude

greater than conventional systems, and may employ advanced technologies, including high-

speed signaling for both optical and electrical channels as well as heterogeneous mixes, possi-

bly using vertical cavity surface emitting laser (VCSEL) arrays. Optical switching and rout-

ing technologies will also be employed, but it should be noted that routing and flow control

are already nearing optimal capability. High-bandwidth, high-density memory devices might

also facilitate fast communications. (The working group notes that the external bandwidth

provided by the current generation of commodity memory devices is not anywhere near

what they could be capable of if they made use of existing advanced signaling protocols, or

what they already have available within the chip from the memory arrays.)

From these base technologies, advanced network structures may be created. High-radix net-

works organized in non-blocking, bufferless topologies will be deployable within a few years

using a combination of hardware congestion control and compiler-scheduled routing strate-

gies. A number of processor architecture advances are key to providing a sufficient traffic

stream to utilize these future generation enhanced networks for high efficiency. Within the

processor control of fine-grain parallelism, architectures incorporating streams, vectors, and

multithreading provide the large numbers of simultaneous in-flight access requests per

33

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

processor to make good use of such enhanced global network resources. Global shared mem-

ory and low overhead message passage mechanisms make lightweight packets feasible, pro-

viding additional concurrent global network traffic. Other techniques, such as prefetch and

prestaging mechanisms as well as other methods of augmenting microprocessors to enhance

additional requests, also contribute to the parallelism of communication and the effective

exploitation of global bandwidth.

4.3.4. Enabling and Exploiting Function-Intensive Structures
Among the foremost opportunities for custom architecture are two related ones: the tremen-

dous potential expansion of arithmetic functional units on a per die basis to increase peak

floating point bandwidth by one to two orders of magnitude and, more importantly, greatly

enhancing processor internal bandwidth and control locality. Spatial computation via recon-

figurable logic is one such architectural method. Streams that capture physical locality by

observing temporal locality is another. New methods embodied at the microarchitecture

level promise to enhance both locality and scalability of vectors. Processor-in-memory cap-

tures spatial locality via high-bandwidth local memory with low latency, and exploits high

logic capability by enabling many active data/logic paths on the same chip. Chip stacking

may further increase local bandwidth and logic density. General techniques of software

management of deep and explicit register and memory hierarchies may lead to further

exploitation of high-logic density.

4.3.5. Efficiency Via Custom Mechanisms
Efficient execution and scalability demand the ability to exploit fine-grain tasks and light-

weight communication. Custom architectures provide a unique opportunity through the

design of hardware mechanisms to be incorporated in the processor, memory, and communi-

cations elements. Such mechanisms can provide high-speed means of synchronization, con-

text switching, global address translation, message generation, routing, switching, acquisition,

and interpretation. Fast methods of memory management, cache handling, and security in a

global parallel system can greatly reduce factors contributing to lower efficiency.

4.3.6. Execution Models
To effectively exploit the capabilities of custom architectures described in the previous sec-

tions, execution models must be devised that govern the control of the global parallel system in

response to the computational demands of the user applications. A good model should expose

parallelism to the compiler and system software, provide explicit performance cost models for

key operations, not constrain the ability to achieve high performance, and provide an abstract

logical interface for ease of programming. While no single execution model for, and supported

by, custom architectures was selected, potential elements of such a future model of computa-

tion were identified based on the classes of parallel architectures being considered.

The spatial direct-mapped hardware approach suggests its own paradigm; although in the

limit, it could efficiently emulate many different such models. Low overhead synchroniza-

tion mechanisms open up the prospect for a rich array of parallel constructs and the poten-

34

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

tial of new memory semantics. With the prospect of PIM-enabled architectures these can be

further advanced, along with additional fundamental constructs such as message-driven

computation, traveling threads, and active pages. Streams and threads extend the space of

lightweight efficient parallelism that both supports and is supported by future execution

models. Such models must distinguish between local (uniform-access) and global (non-uni-

form-access) memory structures and access policies.

The programming models represented by Co-Array Fortran and UPC are good first steps.

However, far more sophisticated execution models will be required to fully exploit the

potential of promising new custom architectures.

4.4. Open Issues

4.4.1. Programming and HEC Architecture
High-end computing is general purpose. The applications demanding HEC performance will

use a wide variety of algorithms and data structures, both known and yet to be developed.

Moreover, large simulations will frequently involve different sorts of models for different

components, and different approaches for several time scales important to a calculation.

Many applications will not match the massively parallel, data-parallel, or MPI models that are

supported most efficiently by today's HEC machines. Therefore, future HEC architectures

will need to support programming-in-the-large. It must be possible to put large programs

together by combining components that are separately implemented. Component interfaces

should be simple and independent of the mechanisms used internally. Programs for large

simulations will often be so large that compiling in one step is not practical.

Some of the proposed architecture ideas are not general purpose and/or do not explain how

programming-in-the-large would be supported. A large-scale, high-end system must support

the simultaneous execution of multiple jobs for different users with security. This is neces-

sary to make efficient use of the expensive equipment. Any complete architecture proposal

must indicate how this will be supported. Applications people have requested both program-

mer/compiler direction of resource allocation and dynamic resource management at run-

time. For dynamic resource management, hardware support is essential and must be includ-

ed in any complete proposal. In addition, a global shared address space is essential for imple-

menting dynamic resource management that is sufficiently general.

4.4.2. The Role of Universities
In the quest to regain U.S. leadership in high-end computing, universities provide a critical

resource. Academic institutions are a major source of innovative concepts and long-term

vision. They keep the research pipeline full, in part because they provide the students who

are engaged in formulating and testing new ideas and developing the skills required to pur-

sue them. Universities have demonstrated their proficiency at conducting early simulations

of conceptual hardware and software systems, and they are a major facility for developing

35

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

prototype tools. While it is difficult to produce leading-edge integrated circuits, universities

are one of the few venues for implementing first-generation prototypes of novel concepts.

A current trend in computer science education is that students are no longer commonly

exposed to massive parallelism in particular, and there is a significant decline in students of

parallel computer architecture in general. In addition, there is atrophy in student interest in

high-end computing. Universities provide only part of the solution and they have certain

limitations. They do not do well in extending the work beyond the early research stage to

the realm of robust products (there have been notable exceptions; e.g., BSD Unix). Due to

the ephemeral tenure of student engagement, retaining teams is a challenge; this is aggravat-

ed by the difficulties imposed by soft money and the uncertainties of funding. This latter

issue should be addressed as part of the overall strategy devised by the HECRTF.

4.5. Roadmap

Based on assumptions of sufficient and sustained funding, a general timeline of possible

advances for research and development in innovative custom architecture can be projected

using the concepts presented earlier as a basis for technical exploration. To this end, three

epochs of five years each are considered beginning in FY05, the first fiscal year for which

funding derived from this initiative may be anticipated. It is recognized that only funding

for the first five-year period will be determined initially. But planning, even for this phase,

requires a long-term perspective and vision to identify early basic research activities required

in preparation for future conditions, such as the end of Moore’s Law or the introduction of

new execution models or technologies.

Three general classes of research and development are identified, including basic research,

experiments and prototypes, and development toward initial deployment. At least some of

the strategies under consideration can have a direct impact on systems deployed within the

next five years, but will require relatively mature support software and friendly users.

Additional work on these ideas will continue to refine and enhance the original approaches.

The majority of architecture concepts presented will require advanced development and

testing to evaluate their potential. Such experiments would result in prototypes in many

cases, and yield detailed evaluation for risk reduction.

For those ideas warranting further investment, continued funding would deliver deployable

architectures within the second five-year epoch. As silicon-based semiconductor technology

reaches its sunset phase, truly innovative ideas must be devised and pursued that, while more

risky, may ultimately and entirely supplant conventional (or even near-term advanced)

approaches towards the latter half of the second decade. In preparation for addressing HEC

beyond Moore’s Law, basic research will need to be undertaken even within the first five-

year research phase.

36

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

It should be noted that several companies are developing custom architecture roadmaps,

including IBM, Cray, SGI, SRC, as well as some smaller concerns. While the focus is on archi-

tecture, concomitant software development must be pursued in tandem with all proposed

architecture research. The following sections present a sketch of a roadmap for research and

development of advanced and innovative custom architecture over the next fifteen years.

4.5.1. Five Years (FY05-FY09)
Deployable. Within the first five years, specific custom architecture elements will be deploy-

able in HEC systems delivered to government agencies prior to the end of this decade.

Advances in network technology can provide a new generation of high-bandwidth intercon-

nection links, drivers, and routers exhibiting 10X or more bandwidth, and latencies below

one microsecond across very large systems. New high-bit-rate wire channels, optical fiber

interconnects, and high-radix routers together can deliver critical global bandwidth gains

over conventional means in real-world systems by the end of the decade. This important

improvement will come with no software changes required in order to be applied to mission

codes. Such work is being performed at Stanford University, among other institutions.

Symmetric multithreaded architectures will become ubiquitous within the next five years.

However, there is an open question as to whether vendors will continue to emphasize single-

thread performance, in lieu of supporting increased parallelism. Spatial direct-mapped archi-

tectures (i.e., adaptive logic) can be deployed as well for friendly customers, with significant

advances in software and compilation strategies accomplished in this period.

Prototypes and Experiments. Several advanced architecture concepts identified previously in

this report could be developed and prototyped within the first five years of a new initiative.

Such experiments would permit evaluation at sufficient depth to determine which specific

concepts warrant investment during the second phase to bring them to a maturity level suf-

ficient for deployment. Examples of architecture concepts for which substantial experi-

ments could be performed in the first five years are:

• QCDoC [8], a domain-specific architecture for high accuracy QCD calculations at

Columbia University;

• Merrimac Streaming architecture for high computation to communication processing at

Stanford University;

• The Berkeley Emulation Engine [6], another domain-specific architecture for immersed

boundary method codes at UC Berkeley;

• PIM-lite and MIND processor-in-memory (PIM) architectures for general-purpose, data-

intensive (low temporal locality) computations at the University of Notre Dame and

Caltech; and

• Ultra-low-latency optical networks using fiber optics, at Columbia University.

Basic Research and Exploratory Studies. Beyond the continued current trends of silicon-based

semiconductor technology dictated by Moore’s Law, innovations in device structures and tech-

37

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

nologies and radical changes in architecture and execution models will require that fundamen-

tal basic research be initiated within the first five years of the new program. The early

exploratory studies will develop inchoate concepts and push the edge of the envelope to pro-

vide the mission agencies with alternatives to avoid limits on capabilities in the early part of the

second decade. Such research could include new computational models, nanotechnology, quan-

tum dots, cellular automata, amorphous computing, and continuum computer architecture.

The purpose of these studies would be to develop the basic concepts and relationships

among these new technologies, structures, execution models, programming models, and

application algorithms capable of exploiting billion-way parallelism towards exaflops-scale

computation. New architectures that are resilient and fault tolerant and have decentralized

control (e.g., distributed agents) would yield robust systems at scales where single point fail-

ure modes would limit sustained uptimes to seconds. New approaches to compilers and run-

time systems as well as scalable I/O and operating systems would be undertaken, and would

be strongly influenced by work on novel programming models.

4.5.2. Ten Years (FY10-FY14)
The second five-year epoch of a new funding initiative in custom computer architecture

could prove to be an explosive renaissance in system design, capability, robustness, and usabili-

ty. All prior prototypes and experiments that had demonstrated viability during the first five-

year phase of the program could be deployed at mission agency sites. Such systems would pro-

vide sustainable performance for general applications in the 10 to 100 petaflops performance

regime and exhibit competitive recurring cost compared with conventional techniques. They

would also deliver far superior operational attributes for at least many important agency appli-

cations, assuming they were properly funded. Virtually all of the prior technology opportuni-

ties developed in the first phase will be deployable by the second phase in real-world HEC sys-

tems. But initial adoption of such systems will be limited by drastic changes required in execu-

tion and programming models, although methods for transferring legacy codes to such radical

systems will continue to be an area of important research. Infrastructure will have to be estab-

lished between academia and industry to encourage and enable the transfer of research results

and their incorporation in deployed hardware and software systems.

Innovative concepts, having gestated during the first five-year phase of the project, will be

down-selected based on probable risks and potential rewards. The most promising opportu-

nities will be carried forward into the experimental phase of research, with possible proto-

types being implemented and tested as appropriate. For example, a continuum computer

architecture prototype implemented with quantum dots fabricated using nanoscale technol-

ogy might be prototyped to establish the feasibility of manufacture and application. It is this

set of experimental systems that will set the stage for the post-Moore’s Law era to sustain the

growth of HEC system capability, in spite of the flat-lining of conventional semiconductor

technology. During this period, new concepts can be anticipated from academic research

groups, and these will provide the basis for new basic research projects.

38

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

4.5.3. Fifteen Years (FY15-FY19)
With silicon scaling at sunset, systems developed and deployed during the latter part of the

second decade will exploit revolutionary techniques in circuits, packaging, architecture, and

software strategies. These truly revolutionary custom architectures will mesh with the end

of the silicon roadmap and new non-silicon technologies that will have been proven during

the previous phases of the program. As these exotic systems are prototyped and deployed,

alien in form and function but capable of near-exaflops performance, entirely new software

environments for resource management and programming will have been devised and will

be developed during this period. Ironically, these systems delivering one hundred thousand

times the performance of current HEC systems may be smaller, consume less power, and

take up much less space than even today’s terascale systems. We cannot know this part of the

roadmap, but we can prepare for it and enable its extraordinary impact through basic

research in the first phase.

Regarding the basic research to be conducted in this end phase, we cannot even hazard a

guess. For if we were able to speculate at all, then we would be defining part of the research

agenda for the next five years, not one of more than a decade from now. But we can be certain

that with sufficient and sustained funding, the HEC community in the United States can

provide the new ideas, technologies, and applications that will continue to drive this nation’s

competitive position for defense and commerce as this century enters its adolescence.

4.6. Summary and Conclusions

Custom-enabled HEC architecture provides a vital alternative to conventional COTS-based

system design by enabling the exploitation of potential advantages intrinsic to available and

near-term technologies, but demanding innovative hardware structures and software man-

agement models and methods. In many important metrics, custom architectures may deliver

between 10X and 100X advantage over conventional COTS-based systems employing equiv-

alent semiconductor technology, including peak and sustained performance, performance to

cost, power, size, and reliability. Custom architectures may efficiently support advanced exe-

cution and programming models that will both deliver superior sustained performance and

greatly facilitate programmability, thus enabling systems of exceptional productivity for

applications driven by federal agency missions.

It is imperative that research in advanced, custom scalable HEC architecture be sponsored at

an accelerated and continuous level to regain U.S. leadership in the field of HEC architec-

ture, and provide the tools to secure dominance in this strategically critical technology for

national security and commerce. To a large extent, the students we train in the first epoch

will be the ones doing this work in the final epoch, and it is crucial that we give them the

mindset, tools, and funding to be able to set a truly innovative and aggressive research plan 15

years from now.

39

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g40

5

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

RUNTIME AND OPERATING SYSTEMS

Rick Stevens, Chair

Argonne National Laboratory

Ron Brightwell, Vice Chair

Sandia National Laboratories

The working group considered the principal functional requirements of operating systems

and runtime systems for high-end computing systems likely to be available by the end of the

decade. The group also explored the research needed to address these functional require-

ments. Lastly, the group discussed the role of open source software, and the need for testbeds

to enable broad community participation in research and development and to support out-

reach and education.

To focus the discussion, the working group made the following general assumptions. First,

we assumed that future systems would be substantially larger than current systems. Hence,

the scalability target for analysis considered systems several orders of magnitude larger than

today’s largest systems (i.e., one hundred thousand to one million nodes). We also explicitly

targeted both COTS-based systems and systems made from custom logic, including commer-

cial systems. At each point, we considered current technologies, the limitations of current

approaches, leverage that might be obtained from open source software technologies, and

new ideas needed for breakthroughs. Where possible, we indicate those recommendations

that could be pursued in the near term and those that are longer term due to either techno-

logical unknowns or problem difficulties.

The working group considered a broad range of topics relating to runtime and operating sys-

tems for high-end computing systems, including operating system and runtime Application

Programming Interfaces (APIs), high-performance hardware abstractions, scalable resource

management, file systems and data management, parallel I/O and external networks, fault

management, configuration management, operating system portability and development

productivity, programming model support, security, operating system and systems software

development testbeds, and the role of open source software.

5.1. Recurring Themes

The working group noted the limitations of Unix (Linux and other Unix variants) for HEC.

Unix has been the technical world’s operating system of choice for nearly thirty years. While

it has served the community well, its very design point and set of assumptions are increasing-

ly at odds with the needs of high-end computing. Today, the operating system and runtime

research community is almost entirely focused on delivering capability via commodity-lever-

aging clusters — this may not be the proper balance for the future.

41

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

We believe the operating system and runtime service models will soon merge. We also

believe that increasing performance feedback for dynamic adaptation, including increasing

coupling among operating system, runtime, and applications, is an important trend.

Increasing the transparency (i.e., exposing and making visible) of those aspects of the soft-

ware and hardware that impact performance is increasingly important if we are to manage

very-large-scale systems effectively.

We also believe many groups will opt for a minimalist approach to operating system and run-

time services, whereas others will need operating system support that is more fully featured.

Future systems should be capable of supporting both models. There may also be opportunity

for improving operating system and runtime performance via hardware support for certain

features and functions (e.g., fault management and resource monitoring). We also believe

operating system and runtime research should be more closely coupled to hardware research

in the future.

Lastly, it was very clear that the current lack of large-scale testbeds is limiting operating sys-

tem and runtime research for the HEC community. Such testbeds can provide the broad

research community with access to flexible testing environments and scalability research

platforms. These testbeds should be available to university groups, national laboratories, and

commercial software developers.

5.2. Operating System Interfaces

It seems clear that the POSIX APIs used on most operating systems will be inadequate to

support future large-scale HEC systems. In particular, the overhead of some POSIX opera-

tions varies widely across systems, leading to unexpected performance problems when mov-

ing applications from one system to another. Some POSIX operations also require a heavy-

weight operating system on each node, which is inappropriate for systems composed of large

numbers of lightweight processing elements. The need to run current applications on future

HEC systems requires that these systems continue to support a POSIX compatibility mode,

but this need not be the primary API.

An ideal operating system API would have performance transparency so that the cost of

every operation is visible to the programmer, compiler, or code generation system. Such an

API should also be sufficiently modular to support HEC systems that do not run a full oper-

ating system on every node. Future applications will still require common APIs across operat-

ing systems for application portability; vendor-specific APIs are not acceptable. Because there

has been little work on common, high-performance, non-POSIX APIs, we recommend a

research initiative to develop such APIs. In the longer term, a new operating system API must

be standardized and implemented by HEC vendors.

42

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

5.3. Hardware Abstractions

Historically, one operating system role has been abstracting the underlying hardware, provid-

ing a virtual machine that either contained additional features or hid hardware idiosyn-

crasies. The main drawback of virtualization is that it hides key features of the hardware that

the application may be able to exploit for improved performance.

As an example, consider two programming models, one based on shared memory using

threads and the other based on MPI. In the threaded model, the operating system can hide

the number of actual processors from the application by multiplexing threads on the hard-

ware. This simplifies the programming model and enables support for dynamic allocation of

processing resources as the number of threads changes. The drawback is that multiplexing

threads on processors can lead to high overhead for context switching and cache thrashing.

In MPI programming, it is common for the number of MPI processes to equal the number of

processors on which the program is running. However, when debugging, it is common to

place a large number of processes on a small number of processors. The user must make an

operating system call to determine the current execution mode.

Lastly, as hardware becomes more varied, the opportunities for abstraction increase. For

instance, it is not obvious that an operating system should hide the number of PIM proces-

sors or the details of an FPGA extension. If the hardware changes or is unavailable, what

behavior is appropriate? Additional research is needed to identify the appropriate virtual-

ization and abstraction models. These models must elide unnecessary detail while also pro-

viding performance transparency — the ability to optimize for hardware details where

needed.

5.4. Scalable Resource Management

Operating system services for resource management must adapt to the usage model of high-

performance applications. In particular, cluster-level resource management should schedule

cluster resources in an optimal way for parallel application performance. The cluster

resource manager should map application processes and threads onto the system in a way

that optimizes message traffic, given knowledge of application messaging dynamics and

network topology. Similarly, node-level resource management should provide a minimal set

of operating system services that maximizes the resources available for application use.

As an example of intelligent resource management, processes that generate large volumes of

message traffic should be placed nearby on the network to minimize message latency. More

generally, a cluster resource manager should schedule network and I/O resources (to disk or

archival storage) to avoid resource contention, provide predictable performance, and avoid

ailing nodes. Lastly, the time needed to allocate resources and launch a large parallel job

should scale logarithmically with the number of processes.

43

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

Typically, scientific applications do not share node resources, and they are sized to utilize all

of the node’s available computing resources (i.e., memory, processors, and network inter-

faces). Thus, sophisticated operating system services designed for commercial use (e.g., such

as virtual memory management and time-sharing) are not appropriate for high-end comput-

ing. Rather, it should be possible to manage a node’s available memory in application space.

NUMA memory systems should minimize the distance between memory placement and

the processor on which the process/thread is running. Once memory is allocated, it should

not move in the non-time-shared environment of node-level HPC.

Operating systems for high-end computing must also manage shared resources. Examples

include files (long-lived data) and the communication network in systems with multiple,

concurrently executing applications. Where possible, this protection should be implement-

ed in hardware. When hardware protection is not provided, the needed protection must be

implemented in software. Currently, high-end systems do not provide adequate hardware

to control access to the communication fabric; these systems require a software layer to pro-

vide the necessary access control. In contrast, the communication network of the planned

IBM Blue Gene/L system can be partitioned to reflect the node allocation when an applica-

tion is launched.

Lastly, applications should have the flexibility to manage resources on their behalf when

such access does not compromise inter-application security. Otherwise, performance-sensi-

tive applications incur unnecessary complexity and overhead to implement their own ver-

sion of resource management. In these cases, performance is substantially worse than if the

operating system implemented the right policy.

5.5. Data Management and File Systems

We believe legacy, POSIX I/O interfaces are incompatible with the full range of hardware

architecture choices contemplated. The ordering semantics for multiple, simultaneous writ-

ers are particularly onerous on a distributed memory system that lacks implicit memory syn-

chronization. Additionally, the interface does not fully support the needs for parallel support

along the I/O path. For instance, implementations leverage non-standard extensions and

overload to communicate striping needs and strided access.

Any file system suitable for use on high-end systems must be extremely scalable. The distrib-

uted, cooperative problem-solving approaches assumed by clusters and multi-program, paral-

lel platforms have ignored the potential processing capability within the I/O system. An

alternative, appropriate operating system API should be developed for high-end computing

systems. However, such an alternative should not deviate from POSIX except where POSIX

functionality limits performance or programmability.

Data management systems should be developed that leverage enterprise-wide authentication

schemes and provide interoperable authorization mechanisms. They should recognize the

44

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

differences in capacity and performance required by high-end systems and workstations,

while functioning appropriately in the presence of both. In general, they should promote

sharing via primitives to access data across geographically distributed administrative

domains.

Lastly, the concept of a distributed approach to problem-solving could be extended to

include the hardware closest to the storage. Intelligent storage services such as active disks

could yield significant throughput enhancements by selective filtering, deep pipelines, pro-

viding translations, or other small pre- and post-processing duties. Research is also needed to

explore appropriate methods for decomposing metadata services to enable scalability.

5.6. Parallel and Network I/O

Some classes of future HEC systems will have hundreds of thousands or millions of proces-

sors. High-speed, specialized interconnect fabrics will provide communications among

processors or groups of processors. In such systems, each processor may not have an external

network or I/O channel interface. Instead, many processors, possibly thousands, will share a

common external network or I/O channel interface. Operating systems and/or runtime sys-

tems will be required to share, schedule, and control these resources. There are several possi-

ble ways to provide this service, including gateway nodes, proxies, routing, direct protocol

conversion, protocol layering, and multi-protocol switching technology.

Because these future high-end systems may have thousands or even millions of external I/O

or network channels and some of the I/O resources may be geographically distributed, Grid

and network technologies may be needed for remote resource management, including secu-

rity as well as scalable and dynamic parallel use of external network and I/O interfaces.

Hence, research is needed on mechanisms that can provide suitable shared, external I/O and

general network interfaces for HEC systems. Because many HEC sites currently have this

problem, some coordination of these ongoing research activities would be helpful to collect a

body of useful information to determine if there are general answers. Over the longer term,

perhaps general research into aligning internal mesh and external I/O and network interface

protocols is in order. Additionally, research into the proper way for HEC systems to interface

with the Grid services is needed, especially research to validate the appropriateness of solu-

tions at scale. Lastly, scheduling bandwidth, quality of service, and fairness are also issues to

consider.

5.7. Fault Management

Handling faults is critical to the future of high-end computing, and they can occur in many

different system components: memory, interconnects, disks, and nodes. To manage such

faults, integrated solutions involving detection/prediction recovery are needed. Some solu-

tions exist today for handling memory, interconnect, and disk faults. Moreover, applications-

45

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

level mechanisms (e.g., checkpointing and recovery) are used to handle node faults. However,

as system sizes increase to 100,000 nodes and beyond, novel scalable and high-performance

solutions are needed to manage faults and maintain both application and system operation.

The working group recommends several, concurrent research tracks for efficient and effec-

tive fault management in large-scale, high-end systems. First, efficient schemes, including

operating system mechanisms and architectural solutions, are needed for fault detection and

prediction, diagnosis, and recovery. Second, novel schemes such as replication and ubiquitous

virtualization must be included in the runtime system to handle faults gracefully, with little

impact on performance. Lastly, integrated solutions with configurable management schemes

are needed to reduce the cost of detection and recovery, while also minimizing performance

degradation.

5.8. Configuration Management

Current configuration management tools for high-end systems are inadequate in several

ways. First, the tools do not scale well to systems with hundreds or thousands of nodes, and

there is little prospect they will perform well on systems with tens of thousands or millions

of nodes. In the event of failures during a system update, an inoperable system may result or

the state of the nodes of the system may be unknown. The failure of an update may require

extensive individual installation and/or repair of software for each node that was incorrectly

configured. These shortcomings should be addressed if large-scale systems are to be manage-

able in a cost-effective, productive way.

We recommend that system software release and configuration management tools be able to

operate effectively at both moderate and very large scales. We further recommend that relia-

bility be a major concern during the development of systems release management software.

In the event of a failure of all or some of the nodes during a systems software upgrade, the

cluster should be in an operational state. It should be possible for the systems manager to

determine which nodes have been updated and which have not; and it should be possible to

restart the upgrade operation from where the operation was interrupted.

Nodes that were unavailable during the upgrade should automatically update themselves

when they are brought back online. Furthermore, it should be simple for a manager of a

very-large-scale system to revert to a previous configuration or move forward to a test config-

uration of the systems software on all or any subset of the nodes.

In the short term, reliability should be favored over speed and scalability. It is important to

develop capabilities such as journaling or multiphase commits to ensure that an operable sys-

tem results from an upgrade operation. It should be possible for all nodes to maintain an

inventory of their state and to ensure that they are up to date at boot-time or when they are

brought into service. After these basic operations are developed, scalability of these opera-

tions needs to follow shortly thereafter. In the longer term, standardized interfaces for con-

46

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

figuration management should be developed to allow for different packages that comprise a

"system" to be integrated and managed with the same tool set. We may need to deviate from

the file-based Unix approach.

5.9. Operating System Portability

As has been noted repeatedly, the next generation of high-end systems will be composed of

large numbers of components — compute nodes, storage nodes, administrative nodes, switch-

es, monitors, and management devices — each with its own local processor. It is highly desir-

able that these components have common features implemented using a shared code base.

The primary distinctions among the components will be their degree of customization with

respect to their host applications, and the set of devices controlled by their local processor.

Components may also be customized with special-purpose hardware, such as FPGAs.

To the degree that the component control framework and shared features (such as RAS,

firmware loading, and network interfaces) can be made common, high-end systems will ben-

efit from reduced costs and increased productivity. This core operating system will then pro-

vide the basis for the runtime platform for each component. Shared code is also likely to be

more reliable as well.

One of the Linux operating system’s strengths is the wide variety of hardware device-driver

code available. One obstacle in the development of new or improved operating system soft-

ware is the need to modify or recreate a variety of device drivers. Device drivers are non-

portable for several reasons. First, the context in which they are embedded (e.g., a network

protocol stack such as Bluetooth) is insufficiently parameterized to allow the substitution of

alternate drivers. One example of this was the proliferation of entire TCP/IP stacks on

Windows systems before the movement of the TCP/IP stack into the operating system.

Second, the context in which the driver executes differs across operating systems, and varies

over time within an operating system. For example, the memory management functions

within the Linux kernel changed in the midst of version 2.4; drivers that worked in 2.4.3 no

longer worked in 2.4.9.

One can view the role of the device driver within a protocol stack (or any use of the driver)

as the provisioning of an actual strategy (the driver implemented as a module) into a parame-

terized module (the network stack). This requires a well-defined interface with well-

designed architecture, along with the protocols for how the modules communicate and

interact. The adoption of such a "strategy pattern" is useful at many levels within the operat-

ing system software for HEC. For example, consider a job-scheduling system that is parame-

terized with a module providing specialized node allocation based on known network char-

acteristics. The scheduler itself could then be independent of the actual network topologies.

Modularity is not a new issue, either in the design of systems or programming languages.

What is needed is to find and use efficient and effective techniques for developing and

47

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

documenting parameterized operating system modules, while minimizing the performance

overhead incurred. This approach does not require object-oriented inheritance, but only a

distinction between interface and implementation, along with the ability to bind alterna-

tive implementations.

We recommend a review of current driver implementations to abstract execution context

requirements and to derive interface requirements. We must also develop processes to

encourage the adoption of clean, well-defined, and long-lived models for device interfaces.

Concomitantly, we must support and encourage the development of a common runtime

execution platform that can be used as a basis for all processor-equipped devices within a

large system, supporting common services such as RAS, monitoring, or configuration

management.

We must also encourage the definition and adoption of parameterized modules throughout

the design of all operating and runtime systems. Moreover, we must invest in the use of mod-

ular programming languages for implementating operating systems, including the develop-

ment and deployment of tools needed to improve the runtime performance of parameter-

ized modules. For example, a binding tool can be used to eliminate performance overhead

when the parameterization is set during system link time.

5.10. Operating System Security

Several definitions are in order before discussing operating system security. Multilevel securi-

ty (MLS) processes information with different classifications and categories that simultane-

ously permit access by users with different security clearances and deny access to users who

lack authorization. Second, authentication is the process whereby an entity proves its identi-

ty to another entity. Lastly, authorization is the set of access rights granted to a user, program,

or process. It is also the operational act of allowing subjects to access a resource after deter-

mining that they hold the required set of privilege attributes.

Almost all operating systems currently in use rely on a security model based on the original

Unix security model — resources are accessed via processes. Resources are represented as files

(devices even look like a file), and they have an attribute consisting of a user name and group

name. Each resource has a permission mask, which defines access permissions (read, write,

execute, and others) for the user name, group name, and all others (world). Processes are

authenticated via an initial process (usually login), which sets the user and group identifier

of the process as well as a set of other groups. From that point, the process attributes allow

access from the process to any resource that matches those attributes.

In Unix, processes cannot re-authenticate and change authorization; the only mechanism for

a change in authorization is the setuid system call, a blunt tool indeed. Processes cannot pres-

ent different authentication data to different resources to gain different authorizations.

Resources are not active in Unix; they are passive, and hence cannot engage in authentication

48

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

or authorization activity with a client. Moreover, resources cannot possess attributes outside

the simple user/group/world model.

The file system space of a Unix system can be described as a "space of names" — a name

space. Unix processes augment the name space via the Unix mount system call. When a

process modifies the name space of a machine, the modification is global — all processes on

the system will see the modification. In programming language parlance, mounts are not free

of side effects — they modify the global state of the system, not the local state of the process.

Unintended sharing can be the result, violating the goal of confinement.

The Unix user-naming mechanism is outmoded. Users are named, and permissions deter-

mined, by an integer number. There is obviously no possibility of gaining agreement on user

name to number mappings on a global scale; it is hard enough in a single organization. In

Grid environments, this integer user ID (UID) presents problems that have been widely dis-

cussed. The designation of a user by an integer also causes problems in accessing file servers

such as NFS, since the UIDs must be kept consistent across the client/server boundary, and

such consistency is again unachievable on the Grid. The entire file system layer of Linux

revolves around the UID mechanism and is not easily changed to some other mechanism.

Modifying Linux to use names, not UIDs, would require an extensive rewrite of the kernel,

GNU library, and GNU tools, as well as almost all extant network file systems.

Lastly, Unix operations rely on root as a privileged user. For the root user, no operation is

off limits or out of bounds. Privilege checks are bypassed for the root user. The root user

can attain the privileges, via setuid, of any other user. Most Unix exploits revolve around

spoofing programs running as root into doing something that violates the security on the

system. The existence of the root user will, inevitably, reduce the security of the system.

Removing root is impossible because so many basic Unix mechanisms rely on the exis-

tence of root.

The lack of sophisticated permissions in Unix limits the ability to implement strong security

and multi-level security. Because resources are passive not active, they cannot engage in more

sophisticated authentication transactions. Because resources have simple permissions, the

increased sophistication required for MLS and more fine-grained access controls is not possi-

ble. Because name spaces are global, unintentional leakage of information ("side effects") is

possible. The limitations of integer UIDs are pervasive, although most Unix-like operating

systems use them for high-end systems. The structure of Unix is difficult and in some cases

impossible to modify, since many of these properties are structural.

Existing Linux extension efforts do address some of these problems. Linux will soon have

Access Control Lists (ACLs), which will enhance the protections provided by the file sys-

tem. Since Linux version 2.4.19, Plan 9-style private name spaces have been implemented on

Linux in a limited way. The V9FS project (http://v9fs.sourceforge.net) builds on this capa-

bility by providing 9p2000 clients and servers, allowing processes on Linux to augment their

49

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

name spaces with strong authentication tools. This separates authentication and authoriza-

tion from the protocol, moving these low-performance bottlenecks out of the main file I/O

code. In the end, however, the Unix security model is not extensible. If nothing else, the use

of integer UIDs and the existence of the root user would be sufficient to require replace-

ment of the Unix model.

What new models might be used in future operating systems? Several possibilities are identi-

fied, such as: making resources active instead of passive; allowing processes to reauthenticate

as needed for different resources; allowing processes to present different authentication, and

gain different authorization, for different resources; providing a richer and more fine-

grained access control model; supporting private name spaces; and better support for Grid

requirements by eliminating (e.g., integer UIDs and the privileged, or root, user).

There are two operating systems, Eros and Plan 9, that provide a proof-of-concept that such

ideas can be achieved. Eros [25] (http://www.eros-os.org/) is a new, capability-based operat-

ing system. In Eros, access to resources is controlled by capabilities attached to the resource.

Resources are passive. We cannot yet tell whether integer UIDs are completely gone, but

integer UIDs are inconsistent with the use of capabilities, so we are guessing that they are.

Root has no meaning in a capability-based system; we have not yet audited the Eros code, but

we believe there is no analogue to the Unix root user.

Plan 9 (http://plan9.bell-labs.com) provides a very different system model than either Unix

or Eros. In Plan 9, resources are active. Processes cannot change their identity once it is estab-

lished, but they can present different authentication, as needed, for gaining access to

resources. Plan 9 invented the concept of private name spaces. Plan 9 separates authentica-

tion and authorization from operations on the resource, which is desirable for HEC. Plan 9

does not support fine-grained access to the resources; it has not been missed due to the way

private name spaces work. Plan 9 has no root user.

It is clear that the Unix process and resource model has limitations that affect HEC environ-

ments, and it is not sustainable for the long term. Ongoing changes to Linux, via the provi-

sion of ACLs, private name spaces, and V9FS, show that in the short term some of the prob-

lems may be ameliorated. It is also wise not to underestimate the willingness of the Linux

kernel team to make far-reaching changes to the Linux, as the 2.5 and 2.6 kernels show.

Nevertheless, there is no clear solution to some of the fundamental problems, such as the

existence of the root user. The two example systems presented show that very different

models are possible and viable (Plan 9 is used widely in internal product development at

Lucent). Research into new security models could lead to resolutions to these problems.

Hence, we believe that new research is needed to explore alternate security models. This

should explicitly include support for operating system models different from Unix.

50

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

5.11. Programming Model Support

The predominant parallel programming model currently in use is based on message passing

using MPI, a fifteen-year-old technology. MPI relies on a library of routines to manage low-

level details of parallel execution, and it requires the developer to partition an application

into many independent cooperating processes to exploit process-level parallelism. This impos-

es a considerable intellectual burden on an application developer. Although MPI programs

are portable across many execution platforms, the development costs are high.

Two alternative programming systems, Co-Array Fortran (CAF) [22] and Unified Parallel C

(UPC) [9], are worthy of concerted experimentation. These promise ease of use and reuse, as

well as gains in programmer productivity and the possibility of high performance. Other pos-

sible advantages include increased tolerance for processor latency, reduced overhead through

single-sided communication, and shared name spaces.

Additionally, application development productivity can be enhanced through better compil-

ers, debuggers, and performance analyzers. As future processor architectures introduce

greater internal concurrency and deeper memory hierarchies, compilers will be required to

better insulate the programmer from such details. Similarly, debugging and performance

analysis can enhance productivity through automated or semi-automated tools. The runtime

environment needs to be enhanced by new or improved tools described above. The program-

ming environment offering CAF and UPC may need additional capabilities from the operat-

ing system for sophisticated management of memory.

51

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g52

6

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

PROGRAMMING ENVIRONMENTS
AND TOOLS

Dennis Gannon, Chair

Indiana University

Richard Hirsh, Vice Chair

National Science Foundation

The charter of this group was to address programming environments for legacy codes and

alternative programming models to maintain the continuity of current practices, while also

enabling advances in software development, debugging, performance tuning, maintenance,

interoperability, and robustness. Our goal was to identify key strategies and initiatives

required to improve time to solution and ensure the viability and sustainability of HEC sys-

tems by the end of the decade.

The working group considered several possible approaches to improving future program-

ming environments. These ideas ranged from innovations that support incremental evolu-

tion of existing programming languages and tools, consistent with portability of legacy codes,

to innovative programming models that have the potential to dramatically advance user pro-

ductivity and system efficiency/performance.

6.1. Key Observations

The key findings of the group can be summarized as follows. The most pressing scientific

challenges of our time will require application solutions that are multidisciplinary and multi-

scale. The complexity of these systems will require an interdisciplinary team of scientists and

software specialists to design, manage, and maintain them. Accomplishing this task will

require a dramatic increase in investment to improve the quality, availability, and usability of

the software tools that are used throughout the life cycle of the application, which will span

many generations of HEC platform architectures.

The strategy for accomplishing these goals is not complex, but it requires a change in atti-

tude about software funding for HEC. Software is a major cost component of all modern,

complex technologies, but the tradition in HEC system procurement is to assume that the

software is free. Mission critical and basic research software for HEC is not provided by

industry because the market is so small and the customers are not willing to pay for it. We

need federally funded management and coordination of the development of high-end soft-

ware tools for high-end systems.

Funding is needed for basic research and software prototypes, and for the technology trans-

fer required to move those prototypes that are successful into real production-quality soft-

53

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

ware. We need better ways for interdisciplinary teams to collaborate and to integrate well-

tested software components into working systems. It is urgent that we invest in building

interoperable libraries and software component and application frameworks that simplify

the development of these complex HEC applications. These technologies show great prom-

ise in revolutionizing HEC programming methodology to improve time to solution. It is also

essential that we invest in new, high-level programming models for HEC software developers

that will improve productivity, and create new research programs that explore the hard-

ware/software boundary to improve HEC application performance.

Structural changes are needed in the way funding is awarded to support sustained engineer-

ing. We need a software capitalization program that resembles the private sector in its under-

standing of the software life cycle. One approach to coordinating a federal effort in this area

would be to establish an institute for HEC advanced software development and support,

which could be a cooperative effort among industry, laboratories, and universities.

Lastly, a new approach to HEC education is also needed, including a national curriculum for

high-performance computing. We need continuing education that will enable us to build

interdisciplinary science research. To enable an improved educational agenda, we need a

national HEC testbed for education and research that will provide both students and

researchers unfettered access to the next-generation HEC systems.

6.2. The State of the Art and an Evolutionary Path
Forward

The term "legacy software" refers to computer programs that embody the state of the art of

our scientific understanding. Like our scientific understanding, legacy codes are seldom

static; they are constantly being modified to reflect the evolution of our understanding.

Consequently, it is our duty to maintain them on each new HEC platform. Unfortunately,

the core modules of legacy code are written in old programming languages, and they are

often designed using outdated software construction principles. To sustain them, new mod-

ules are carefully grafted on or parts of them are manually restructured to make them

work on new architectures. New approaches are needed to help manage the "life cycle" of

these evolving applications.

As our scientific understanding grows, new legacy programs continue to be created. In addi-

tion, algorithmic advances have been required to solve more complex multi-scale problems.

These new programs use a variety of programming tools, including FORTRAN (66 through

95), C/C++, and special interpreted scripting languages like Python and MATLAB. Often,

new applications require a blend of all of these and, to get performance on parallel machines,

it is necessary to use libraries like the Message Passing Interface (MPI) and explicit threading,

or language extensions like OpenMP and High-Performance FORTRAN (HPF). Currently,

MPI is the most common high-performance programming tool. For many computations, MPI

54

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

leads to excellent speedup, but in other cases it requires casting problems and algorithms into

an unnatural form where performance scales poorly.

Many researchers once hoped that compiler-based, automatic parallelization would solve the

problem of scaling sequential software to massively parallel computers. While we have made

great strides, a complete solution is not in sight. However, automatic parallelization has proven

to be an essential tool for optimizing procedure bodies, and for generating the low-level paral-

lel code that is executed on modern processors. One way to make it easier for the compiler to

generate parallel code is to use programming language extensions that allow the applications

developer to express "top-level" parallelism that can be used by the compiler. These new lan-

guage extensions can be considered an important evolutionary path forward. They include

Co-Array FORTRAN, UPC, Adaptive MPI, and specialized C++ template libraries.

6.2.1. Software Productivity
Clearly, progress is very slow in evolving high-end software practices to new languages and

programming models. The rest of the software industry moves much faster in the adoption

of new software development paradigms. Why is high-end system software development

different? Scientists and engineers continue to use older approaches because they are still

perceived as the shortest path to the goal: a running code. Many of the tools are well suited to

the traditional model of one-programmer-one-program. However, our high-end system appli-

cations are rapidly evolving to multi-language, multidisciplinary, multi-paradigm software

systems that are built by distributed, collaborating teams.

The complexity of these applications will soon rival that of large projects at companies like

Oracle, SUN, or Microsoft, where software engineering standards, practices, and tools are

major corporate investments. High-end computing has been largely deprived of participation

in the revolution in software tools. When tools have been available, centers cannot afford to

buy them. When they are available, they are not available on all the requisite HEC platforms.

For example, industrial-strength "build, configure and testing" tools are not available for most

HEC applications/languages.

Near-Term Solutions. A major initiative is required to improve the software design, debug-

ging, testing, and maintenance environment for HEC application software systems. We need

portable software maintenance tools across HEC platforms. We also need a rapid evolution

of all language-processing tools, and we need complete interoperability of all software life-

cycle tools.

Performance analysis should be part of every step of the life cycle of a parallel program. For

example, feedback from program execution can drive automatic analysis and optimization of

applications. Developing extensible standards for compiler intermediate forms and object-file

formats can facilitate interoperability. As an example, Microsoft provides excellent interoperabil-

ity for all of its languages and tools. The HEC world is, by its nature, far more heterogeneous

than the monolithic world of Microsoft, making our problem much more difficult. However,

55

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

our long-range goal should be complete "roundtrip engineering" of HEC software (i.e., the abili-

ty to take a specification of a computation and automatically convert it to executable form and

then back again for design changes to improve either the science or the performance).

Evolution of HEC Software Libraries. The increasing complexity of scientific software

(multidisciplinary and multi-paradigm) has other side effects. Libraries offer an essential way

to encapsulate algorithmic complexity, but parallel libraries are often difficult to compose

because of low-level resource conflicts. Older libraries often require low-level interfaces that

do not exchange more complex and interesting data structures. These problems have led

researchers in some important new directions.

Software component technology and domain-specific application frameworks provide a way

to put multi-paradigm parallel programming within reach. These tools provide an approach

to factoring legacy into reusable components that can be flexibly composed. The framework

handles resource management while components encapsulate algorithmic functionality.

These systems provide for both interface polymorphism and system evolvability. They also

allow us to abstract the hardware/software boundary so specialized hardware can replace a

software component without changing the rest of the application. In general, these compo-

nent systems approaches allow better language independence/interoperability. Testing and

validating applications are made easier because we can test individual components separately

before they are composed into a larger system. We can also ensure components can be trust-

ed, and, if the framework that hosts the components is well designed, we have more trust in

the entire application.

Interoperable component technology made a marketplace of integrated circuits possible;

software component technology may also create a market for HEC application components.

While clearly still a long way off, this would be an exciting outcome. It may be faster to

build a reliable application from reusable components, but will it have performance scalabili-

ty? Initial results with software components based on parallel computing indicate that the

answer is "Yes." However, more research is needed.

6.3. Revolutionary Approaches

A long-range program of research is needed to explore new programming models for HEC

systems. The scientific programming languages of the future should allow the scientist to

think about science rather than the intricacies of parallel programming. One should be able

to express concurrency as the natural parallelism in the problem and not as an artifact of a

software model.

For HEC architectures, the challenge is exploiting locality and hiding communication laten-

cies. However, in large-scale simulations, locality is natural to the problem, but it is often non-

regular or dynamically changing. For high-end systems with limited memory hierarchy man-

56

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

agement and latency-hiding support, software must manage latency. Unfortunately, we are

very far from building tools that are sufficient for this task.

One solution is to design languages from first principles to support the appropriate abstrac-

tions for scalable parallel scientific codes (e.g., ZPL [5]). In general, we must consider all

approaches that promote automatic resource management. For example, we can build exten-

sible compilers that allow us to integrate user-domain abstractions into the compilation

process. Another approach is to telescope languages [7] that allow us to build application-

level languages that compile to a sequence of lower-level languages, each of which can be

optimized for a particular class of parallelism and resource management.

Many concepts that have gained currency in computer science can be applied to high-end

computing to solve both the problems of performance scaling and HEC software life-cycle

management. For example, generic programming teaches us how to separate data structures

and algorithms when building software. This allows us to reuse the pattern of the algorithm

while we replace data structure components. In some cases, it may be possible to automatical-

ly generate program components, given a specification of both the algorithm and the data

structure. This also allows us to publish and discover algorithms as reusable software compo-

nents that can be separately coupled with data structure components.

Another example of a potentially rewarding approach to high-end system software is "pro-

gramming by contract." Here, the programmer specifies the requirements of the generated

code, and the compiler works to either attain that goal or report to the programmer the

tradeoffs needed to achieve the goal. For example, the programmer may have a certain per-

formance level that is required or an absolute requirement on correctness/repeatability.

Alternatively, there may be a requirement for robustness that may necessitate the introduc-

tion of a persistence model into the program.

6.3.1. Research on the Hardware/Software Boundary
It remains difficult to achieve high application efficiency on large-scale cluster architectures,

and only a handful of applications scale to several thousands of processors without careful

hand-tuning. Much more research is needed to explore the detailed interactions between the

hardware and software on modern HEC systems. To accomplish this, we need better instru-

mentation on all parts of the hardware. This includes performance counters for the compu-

tation units and the memory hierarchy.

We must also explore programming language-type systems that better reflect the properties

of HEC architectures. As the operating systems working group noted, we need an open, bi-

directional API between the hardware and software. For example, one may wish to change

the memory consistency model depending on the application. In the future, we may have

more processors based on reconfigurable hardware so an even greater burden/opportunity is

presented to the software.

57

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

Predictability for scheduling, fine-grained timing, and memory mapping is essential for scala-

ble optimization. As HEC systems grow larger, fault tolerance also becomes more and more

important. Software will need to be more aware of the dynamic nature of its execution envi-

ronment and have the ability to adapt to change. We must develop programming models that

better support non-determinism (including results that are desirable, but boundedly incorrect).

We need a better understanding of how the complex memory hierarchy of modern systems

interacts with our software and algorithms. There are limits on what is possible with legacy

codes that have poor memory locality. Software needs better structure-to-hierarchy layout of

control data. Possible new solutions involve cache aware/cache oblivious algorithms. More

research is needed on virtual memory, file caching, and latency hiding. For example, can we

build programming languages/hardware with first-class support for hierarchical data struc-

tures? Will streaming models be a better way to design some HEC software? How can we

make more efficient multi-threaded software/hardware?

6.4. Best Practices and Education

As our applications become more interdisciplinary, better education is becoming essential

for the effective use of HEC systems. Ideally, application scientists would not need to be

experts on parallel programming because a multidisciplinary team would include an expert

on HEC performance programming and an expert on modern software engineering prac-

tices. However, we do not have the trained people to make this commonplace.

Computer science students need to be motivated to learn that performance is fun and appli-

cation scientists need more training in software life-cycle management. In general, both edu-

cators and students need more instructional access to HEC systems. A program to increase

support for student fellowships in high-end computing is essential.

58

7

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

PERFORMANCE MODELING, METRICS,
AND SPECIFICATIONS

David Bailey, Chair

Lawrence Berkeley National Laboratory

Allan Snavely, Vice Chair

San Diego Supercomputer Center

The single most relevant metric of high-end system performance is time to solution for the

specific scientific applications of interest. Reducing the time to solution will require aggres-

sive investment in understanding all aspects of the program development and execution

process (programming, job setup, batch queue, execution, I/O, system processing, and post-

processing).

The current practice in system procurements is to require vendors to provide performance

results on some standard industry benchmarks and several scientific applications typical of

those being run at the procuring site. Constructing these application benchmarks is both

cost- and labor-intensive, and responding to these solicitations is very costly for prospective

vendors. Moreover, these conventional approaches to benchmarking will not be suitable for

future acquisitions, where the system to be procured may be more than ten times more pow-

erful than existing systems.

Improved community-standard benchmarks would be welcome. Both large-scale and low-level

benchmarks would help to streamline and consolidate procurements. Looking to the future,

performance modeling looks even more promising. Recent successes suggest that it may be pos-

sible to accurately predict the performance of a future system, much larger than systems cur-

rently in use, on a scientific application that is much larger than any currently being run.

However, significant research is needed to make these methods usable by non-experts.

Another idea that has considerable merit is to exploit the highly parallel systems available at

many research centers to perform simulations of current and future high-end systems. This

is now possible in the wake of recent developments in parallel discrete event simulation that

permit simulations of this type to be done in parallel. One particularly compelling applica-

tion of such technology is simulating the operation of very large inter-processor networks for

future high-end systems.

Research is also needed to bolster the capabilities to monitor and analyze the exploding vol-

ume of performance data that will be produced in future systems. On-the-fly reduction of

performance trace data, as well as intelligent analysis of this data, will significantly enhance

the utility and usability of these performance tools. All of this research will require signifi-

59

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

cant involvement by vendors, and thus some dialogue will be needed to resolve potential

intellectual property issues.

7.1. Basic Metrics

The consensus of the working group is that the single most relevant metric of high-end sys-

tem performance is time to solution for the scientific applications of interest. Time to solu-

tion is comprised of several factors, including: 1) time devoted to programming and tuning;

2) problem set-up time and grid generation; 3) time spent in batch queues; 4) execution

time; 5) I/O time; 6) time lost due to job scheduling inefficiencies, downtime, and handling

system background interrupts; and 7) job post-processing, including visualization and data

analysis.

Although our primary focus is on execution time, we emphasize that the other items above

are significant and cannot be ignored. Indeed, all of these components of the solution time

must be reduced if we are to utilize future systems effectively. For example, significantly

increasing the computational power of a system will not be very beneficial if the time

required for writing the results to disk dominates the total execution time. Such considera-

tions underscore the need for "balanced" systems, although no one "balance" formula can

suffice for all applications.

Programming time is a very significant issue. For some high-end computing applications, soft-

ware costs constitute as much as eighty percent of total system cost (software plus hardware

plus maintenance). This is due in part to the heavy reliance on the message passing interface

(MPI) programming model, which, although generally superior in delivering good execution

performance, is widely regarded as rather difficult to use. Partly because of this difficulty,

technical software firms have been reluctant to port their programs to highly parallel plat-

forms; as a result, relatively few large corporations have exploited high performance comput-

ing technology.

The first step toward improving this state of affairs is to identify and measure the key fac-

tors that make high-end programming difficult, including programming models, language,

level of abstraction, and barriers to re-use. Such metrics would be useful for determining

software investment strategies, as well as in gauging progress in the area of languages, compil-

ers, and tools. Currently, there are no good metrics for assessing programming difficulty.

Programming difficulty for conventional systems and languages has been studied in the soft-

ware engineering community; perhaps some of these methodologies could be applied in the

high-end arena.

Closely related to the question of programming difficulty is the issue of time spent tuning to

achieve good performance. Currently, there are no objective measures of the effectiveness or

ease of use of tuning tools, as far as we are aware. This issue is addressed in detail below.

60

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

Some work has been done in measuring system-level efficiency. There are significant differ-

ences in efficiency among some existing systems, exhibited by the fact that often only 75

percent or so of the available processor-hours in a given week’s operation are spent executing

user jobs, even though the batch queues have jobs ready to execute. One relevant study is the

Effective System Performance (ESP) benchmark [31], which measures several system-level

factors, including efficiency of the job scheduler, job launch times, effectiveness of check-

point-restart facility (if any), and system reboot times.

We emphasize that many scientists have long complained that their jobs spend inordinate

amounts of time in batch queues. This time is just as unproductive as the time spent waiting

on a job because of poor execute-time performance. These considerations underscore the

importance of focusing resources on those scientific projects most worthy of this valuable

resource, and avoiding the temptation to over-subscribe systems. It also underscores the

importance of efficient job schedulers and facilities such as system-level checkpoint-restart.

For high-end computing, the primary metric of interest is the execution time for key scien-

tific applications. Using this metric avoids many of the common pitfalls in performance

reporting, such as the use of less-than-optimal algorithms to exhibit a floating-point opera-

tion per second rate that is superficially high. When reporting computation rates, responsible

scientists typically use an operation count formula based on the most efficient practical algo-

rithms known for the target application. Thus, if a less-than-optimal algorithm is selected for

some reason, the reported performance will not be distorted by this selection. This is simply

a restatement of the principle that time to solution is the best figure of merit.

However, no one single figure of merit and no one definition of system balance can encapsu-

late the full value of a high-end system. At the very least, important decisions such as pro-

curements should be based on several benchmarks, reflecting the breadth of the scientific

applications for which the system is targeted.

7.2. Current Practice in System Procurements

Currently, high-end system procurements at federally funded research centers are handled

by a process that includes numerous general hardware and software specifications, perform-

ance results on some standard community benchmarks (e.g., the Linpack or SPEC bench-

marks), and timings or related performance figures on a set of scientific programs thought to

be typical of the actual applications programs run at the center. (See chapter 9 for a more

detailed discussion of procurement strategies and recommendations.) Composing the list of

specifications and constructing the set of benchmarks is a highly labor-intensive process.

Often it is necessary to make significant changes to the application benchmarks, which are

obtained from the scientists and engineers using the system, to ensure standard conformance

and portability.

61

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

The specifications and benchmarks are usually selected with the goal of acquiring a sys-

tem that is more powerful than the systems currently in operation. Application bench-

marks are validated on existing systems. In addition to being a dubious means of project-

ing the future full-system performance, such benchmarks typically are not very effective

in disclosing system difficulties that only arise when the entire system is devoted to a sin-

gle computational job.

Once proposals have been received from prospective vendors, the review committee typical-

ly evaluates them using a process that involves factors such as performance, suitability for

the mission, floor space, and power requirements, as well as total cost. Indeed, the selection

process is akin to the constrained optimization problems studied in the field of operations

research, although no one, to our knowledge, has yet formally applied techniques of opera-

tions research to a system selection.

Prospective vendors must devote considerable resources to respond to the requests for pro-

posals for high-end systems, and to the benchmarks in particular. Moreover, the current lack

of any standard, discipline-specific benchmarks across centers means that vendors cannot

amortize costs for porting and tuning codes across multiple solicitations. As a result, the

prices of high-end systems quoted to federally funded research centers must be increased to

recover solicitation response costs. These high costs often discourage smaller companies from

attempting to compete in high-end solicitations.

In short, while prevailing procurement practices are usually effective in selecting systems

that are reasonably well designed, the process is lengthy and expensive both for the govern-

ment and for participating vendors. Thus, any technically valid methodologies that can stan-

dardize or streamline this process will result in greater value to the federally funded centers,

and greater opportunity to focus on the real problems involved in deploying and utilizing

high-end systems.

If any of the current initiatives to revitalize high-end computing are successful, then federal-

ly funded high-end computing centers will be faced with the challenge of acquiring systems

that are potentially ten or more times more powerful than any system currently fielded.

With such a large gap between present and future systems, the applicability of conventional

benchmarking methodology will be questionable. Novel architectures, distinct in design and

technology from any existing systems (e.g., those being explored in DARPA’s HPCS pro-

gram), will compound this challenge. In short, a significantly improved methodology for sys-

tem selection will be required for future solicitations.

7.3. Performance-Based System Selection

The field would benefit from one or more community-standard benchmarks to comple-

ment the scalable Linpack benchmark that has been used for many years. The longevity of

the Linpack benchmark is a tribute to its thoughtful design because it can be arbitrarily

62

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

scaled in size to match the increased capabilities of modern high-end systems. On the other

hand, many believe that that this benchmark emphasizes performance on regular, dense

matrix operations that possess strong data locality, and ignores the realm of irregular, sparse

data access typical of the majority of modern scientific computing applications.

Thus, there is a strong need for one or more new community-standard benchmarks that

characterize other important aspects of high-end scientific computing, yet share with the

scalable Linpack benchmark the desirable characteristics that have made it such a success.

Some discipline-specific, community-standard benchmarks would also be valuable, as they

would enable vendors and computing centers to consolidate their benchmarking efforts, and

would also facilitate useful interdisciplinary performance studies.

A set of standardized low-level benchmarks would also be valuable. The objective would be

to define a modest-sized set of benchmarks that collectively characterize most of modern

high-end computing, and possibly enable future high-end computing requirements to be

defined as a combination of these benchmarks.

7.3.1. Performance Modeling
The best possibility for better understanding performance phenomena, and for assisting in

intelligent system selection, may lie in performance modeling. As one example, accurate per-

formance models have been developed for several full applications from the DOE ASCI

workload [14, 17, 18], and these models are routinely used for system design, optimization,

and maintenance. Moreover, a similar model has been used in the procurement of the ASCI

Purple system, predicting the performance of the SAGE code on several of the systems in a

recent competition [16]. Alternative modeling strategies have been used to model the NAS

Parallel Benchmarks, several small PETSc applications, and the applications POP (Parallel

Ocean Program), NLOM (Navy Layered Ocean Model), and Cobal60, across multiple com-

pute platforms (IBM Power3 and Power4 systems, a Compaq Alpha server, and a Cray T3E-

600) [4, 24]. These models are very accurate across a range of processors (from 2 to 128), with

errors ranging from one to sixteen percent.

These results suggest that it is possible to accurately predict the performance of a future sys-

tem (much larger in size and employing a distinct design from hardware currently in opera-

tion) [20], running a future scientific application (much larger in problem size than current-

ly being run). We can even envision that a future call for proposals will specify that the ven-

dor provide results on a set of low-level "atomic" benchmarks, generating the required input

data, for performance models of key applications. Decision makers would then have not only

performance data but also the capability to pursue various "what if" scenarios. Other uses

include improved system configuration and system maintenance [4, 14, 15, 17, 24].

Executable analytical performance evaluation also shows promise [18]. This methodology

can evaluate early-stage architecture designs over a wide operating range, and can aid in iden-

63

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

tifying advantageous architectural features before instruction set architectures are firmly

established and system software (runtime systems or compilers) is available.

Performance models can be used within a user code to control the execution dynamically

for best performance. Some researchers are considering using simple performance models to

improve load balancing in unstructured grid applications. As another example, computation-

al chemistry researchers are developing techniques to create highly accurate electronic struc-

ture codes based on specific characteristics of the system being used. In data-intensive appli-

cations, the allocation of data between memory and disk, or between local disk and global

disk, can be decided based on system characteristics.

All of this underscores the need for a variety of performance modeling methodologies, rang-

ing from simple, curve-fitting approaches to sophisticated tools that perform a thorough

inventory of all operations performed by the target application program on a particular sys-

tem. However, much work is required to further automate and reduce the complexity and

cost of the modeling work. In addition, more work is needed to define a better interface

between "traditional tools" (such as profilers, timers, and hardware performance monitors)

and modeling tools.

7.3.2. System Simulation
A few simulations have been employed in the research community to study particular

aspects of system performance [23], and vendors often develop near-cycle-accurate simula-

tors as part of their product development. However, computational scientists rarely use such

tools to understand or predict the performance of their applications. Several challenges must

be overcome for such simulations to be useful in understanding application performance.

Perhaps most importantly, the simulation times required to analyze the performance of even

a small loop are very large; the analysis of a full-length application code has been prohibitive.

Another common weakness of these simulations is that they typically target only single-

processor systems or, at best, shared-memory multiprocessor systems.

With the emergence of highly parallel computing platforms, we can consider highly

detailed parallel simulations of scalable systems. In many applications, low-level, processor-

memory behavior can be largely decoupled from the analysis of inter-processor network

phenomena. Once the communication behavior of an application has been profiled, its

inter-processor network behavior can be simulated by generating a sequence of communi-

cation operations that mimic the statistics of frequency and message length typical of the

program’s phases. One important factor is the recent development of parallel discrete

event simulation (PDES) techniques [12, 16]. These techniques, such as "optimistic" specu-

lation, enable simulations to be performed in parallel; otherwise it is very difficult to

achieve even modest speedups due to the fundamental shortage of concurrency and the

need for frequent, low-level synchronization.

64

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

Ideally, we envision an open-source architectural simulation framework and application pro-

gramming interface that enables plug-and-play functionality between separately developed

simulators for different architectural features (e.g., processor-in-memory, polymorphic multi-

threaded processor, and network), and would also enable zoom-out and zoom-in between sta-

tistically based and cycle-accurate simulation techniques. This framework will, however,

require significant advances in simulation methodologies to support concurrent use of mod-

ules running at different time scales and based on different simulation techniques. Some dis-

crete-event simulation packages are available in the research community. It is not clear

whether any of these could be adapted for the requirements described here, or whether a

completely new simulation package would have to be written.

7.3.3. Performance Monitoring Infrastructure
Informal approaches to parallel performance monitoring and performance data analysis may

be currently acceptable; however, such approaches will be inadequate once systems are field-

ed with multiple levels of parallelism throughout the system’s compute nodes, I/O system,

network, and memory hierarchy, and once they include tens or hundreds of thousands of

compute nodes. It is also unlikely that novel architectures can be effectively modeled and

utilized without an advanced monitoring infrastructure.

Advanced facilities for hardware performance monitoring will be required to obtain per-

formance data without significant perturbation. A key challenge, beyond counting events

throughout the system, is in gathering and interpreting the exploding quantity of data.

Today, collecting memory access pattern data, which is often crucial for understanding per-

formance on deep-memory-hierarchy machines, implies a slowdown of three orders of mag-

nitude [26]. However, many applications of interest run for hours or days, during which

their performance behavior changes frequently. Systems with tens or hundreds of thousands

of processors will greatly compound this problem of performance data analysis.

Several alternatives are being explored, ranging from clever statistical sampling schemes to

on-the-fly analysis of performance data that would reduce the amount of data involved.

Meaningful analysis of this data will require advanced techniques such as multivariate statis-

tical methods [1], knowledge discovery tools [28], time series analysis [30], and advanced

visualization schemes [2] to distill important facts from these potentially massive data sets.

This analysis can then be used to select the key features to apply to performance monitoring,

and to build predictive models of the performance of a single processor as well as the entire

parallel system.

A unique opportunity exists for performance researchers to work with vendors to improve

the selection of hardware performance data. Ideally, the design of performance monitoring

hardware should be driven by the data input needs for application performance modeling

and analysis, rather than modeling and analysis capabilities being limited by the available

data. For example, one key item that current hardware monitors lack is information regard-

ing memory addresses, such as data on gaps or patterns between successive addresses. These

65

data would provide valuable insights into the memory behavior of a user program. We hope

that vendors will consider counters useful to application developers and performance tuners

as well, for example by implementing the PAPI proposed standard metrics [3].

Another area where the performance research and vendor design communities could collab-

orate is enhancing the performance monitoring facilities of inter-processor network hard-

ware. Although network hardware often includes some performance monitoring facilities,

the inability to associate performance data with a specific application code significantly hin-

ders applying the data to application performance evaluation. Reconfigurable technology

(e.g., FPGAs) might be of use in supporting performance monitoring applications for both

hardware engineers and end-users. Determining what events are most important to monitor,

designing systems to support low-overhead monitoring that generates data useful to applica-

tion developers, and designing software to utilize this information are important topics of

future research.

Any improvements in the capabilities of performance tools must be matched by a corre-

sponding improvement in ease of use; otherwise they will have only limited impact on the

overall goals of reducing time to solution and simplifying system acquisitions. We envision a

set of standard templates for performance analysis that automatically engage typical per-

formance analysis scenarios, using advanced tools. High-level tools could also increase the

user base of performance facilities by applying techniques of automatic knowledge discov-

ery to performance data. The application of techniques such as decision trees to perform-

ance data has been initially explored [27, 20], but significant additional research is needed in

this area.

It is also important that high-end computing centers make a commitment to port their per-

formance tools to new systems, and keep such software up to date. If users cannot be assured

that these tools will continue to be supported over multiple generations of hardware, they

are unlikely to make the investment of time and effort to use them.

7.3.4. Libraries, Compilers, and Self-Tuning Software
It is not sufficient to merely study the performance of large future systems; facilities for

automatic and/or semi-automatic performance tuning must also be improved. One possible

approach is to expand the scope of optimized scientific libraries for high-performance com-

puting. Three canonical examples are the ScaLAPACK, PETSc, and the NWChem libraries.

Some related efforts include the emergence of the Community Climate Model (CCM) in

the climate-modeling community, and similar efforts to unify fusion and accelerator-model-

ing computations .

One of the more promising developments is the recent emergence of "self-tuning" library

software. Examples include the FFTW library [11] and versions of ATLAS, ScaLAPACK, and

LFC library routines [10]. In an initialization step, a program first tests different computa-

tional strategies (such as different parameters for array padding and cache blocking). The

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g66

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

tuning program then selects the option that demonstrates the best performance for future

production runs. This general approach can be extended to almost any large-scale software

library. However, devising tests, determining optimal parameters, and using the resulting

parameters in the production code must be simplified if this general scheme is to be imple-

mented widely. One possibility combines rapid, on-the-fly performance modeling with such

self-adaptive, self-tuning codes to narrow the parameter space for trying different computa-

tional strategies.

Eventually, these self-tuning facilities can be incorporated directly into conventional user

code. We foresee the time when self-tuning facilities will be understood well enough that

they can be inserted by a preprocessor (and eventually perhaps by a compiler) into a user

code at the start of the main program, or even at the subroutine level. The basic facilities

have already been demonstrated in current research, including self-tuning library software,

performance assertions, compiler enhancements, and semiautomatic code modifications [23].

It is instructive to recall the history of vector computing. Initially, compilers offered little or

no assistance; it was necessary for programmers to explicitly vectorize loops. Then semiauto-

matic vectorizing compilers became available, which eventually were quite successful. The

final step was runtime vectorization, with compilers generating both scalar and vector code,

and then deciding at runtime if the vector code were safe or more efficient. There is a similar

long-term potential for self-tuning code that exploits performance monitoring. Other ideas

for compiler technology that show promise include dynamic compilation and compile-time

searching for optimal run-time alternatives, including array blocking, loop fusion and fission,

flexible data layout, and array padding. Since these changes in several cases go beyond the

limits of what is permissible according to existing language standard definitions, this points

to the need to work with language standard committees in tandem with this research.

67

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g68

8

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

APPLICATION-DRIVEN SYSTEM
REQUIREMENTS

Michael Norman, Chair

University of California at San Diego

John van Rosendale, Vice Chair

Department of Energy

During the working group’s discussions, researchers presented the needs of quantum chro-

modynamics (QCD), fusion research, computational chemistry (including environmental

and catalysis), and the biological sciences. Working group participants provided additional

requirements for the following disciplines: accelerator physics, astrophysics and cosmology,

aviation, atmospheric science, geophysics, materials science, and nanoscience. With this back-

ground, the working group considered the computing system needs and requirements for

next-generation computational science.

8.1. Application Challenges

All of the disciplines mentioned above are large users of current high-end systems, and will

continue to be in the coming decade. Computational QCD sets the scale of what may be

considered large usage today. In aggregate, the U.S. QCD research community sustains 0.5 to

1 teraflops/second (TF) on all resources available to it. A state-of-the-art calculation con-

sumes 0.8 petaflop-hours or 3x1018 floating point operations. Currently, we conservatively

estimate that computational chemistry consumes about 50 TF on a 24/7 basis. Other large

users are within an order of magnitude of this number.

Representatives of multiple disciplines at the workshop made the quantitative case for

speedups in sustained performance of 50 to 100 over current levels to reach new, important

scientific thresholds. In QCD, architectures with a sustained performance of 20 to 100 TF

would enable calculations of sufficient precision to serve as predictions for ongoing and

planned experiments. In magnetic fusion research, sustained execution of 20 TF would allow

full-scale tokamak simulations that resolve the natural length scales of the microturbulence

responsible for transport, as well as enable self-consistent, gyrokinetic modeling of the critical

plasma edge region. Although the needs of ab initio quantum chemistry simulation for

industrial and environmental applications are almost limitless, 50 TF was identified as an

important threshold for developing realistic models of lanthanides and actinides on complex

mineral surfaces for environmental remediation, and for developing new catalysts that are

more energy efficient and generate less pollution.

To demonstrate the range of application needs, we consider two examples: lattice QCD and

computational biosciences.

69

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

8.1.1. Lattice QCD
Recent advances in algorithms, particularly new formulations of QCD on the lattice, now

enable calculations of unprecedented accuracy, provided the required computational

resources are available. Moreover, lattice gauge theory was invented in the United States, and

U.S. physicists have traditionally been intellectual leaders in the field. However, for the past

five years, greater investments in computational resources have been made in Europe and

Japan.

Within the next year, European lattice theorists will have dedicated, customized computers

that sustain well over 15 TF. If U.S. physicists are to regain leadership of the field and be able

to attract outstanding young scientists, comparable resources are needed. Within the next

five years, the U.S. lattice community needs to sustain hundreds of teraflops/second and, by

the end of the decade, multiple petaflops/second. Simplifying features of QCD simulations

provide a pathway for doing so through the construction of special purpose hardware.

8.1.2. Computational Biosciences
High throughput technologies are revolutionizing the way biologists are gaining an under-

standing of how cells and organisms behave. These new technologies, which generate mas-

sive amounts of data, are enabling the study of the complexity of living systems, and are lead-

ing to a paradigm change in the way biological research is conducted — a transition from the

reductionist molecular level to systems biology. Computational sciences and large-scale com-

puters will play a key role in this transition. If the biology data tsunami is not addressed, biol-

ogists will not be able to extract the full range of possible insights from the data.

Examples of high throughput biological sources include genomic data for multiple organ-

isms and for individuals, protenomic data from mass spectrometry and arrays (~100

GB/day/mass spectrometer and for 50 mass spectrometers, 5 TB/day) and cell imaging (a

FRET analysis of a cell generates a megapixel/millisecond). (There are many such spectrome-

ters, leading to tens of TB/day.) Likewise, cryo-electron microscopy for complex cellular and

molecular structures (50 to 100 GB/day/spectrometer), x-ray imaging at synchrotrons

(TB/day), and molecular dynamics simulations (2.5 TB/day on a 10 TF computer) are gener-

ating large data sets. These data sets not only need to be stored, but must be made readily

available to a broad community that places real demands on networks.

As experimental systems in biology become more expensive to purchase and maintain, they

must be localized, which requires real-time, remote control of experiments. In turn, this

requires significant networking resources for user access. In this distributed resource model,

each experiment transmits data back to the user, which enables the user to make decisions

about experiment control. The amount of data transmitted by the user is usually small, but a

high-integrity network is needed with low latency. The amount of data transmitted to the

user may be much larger, making bandwidth and latency management important for real-

time control.

70

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

8.2. System Challenges

These two examples are illustrative — members of every discipline present at the workshop

cited the difficulties in achieving high, sustained performance (relative to peak) on complex

applications as the key hardware challenge. This reflects the imbalance between processor

speed and memory latency and bandwidth. A more serious imbalance exists between inter-

processor latency and bandwidth.

Application scientists have invested considerable effort in optimizing parallel applications

for current architectures. Many researchers have reported application scaling to several thou-

sand processors for fixed work per processor experiments (weak scaling). Fixed-size prob-

lems, such as occur in molecular dynamics and climate modeling, encounter scaling barriers

at much lower processor counts, depending on the size of the problem (strong scaling).

Applications with a single, well-optimized kernel, such as lattice QCD, do well on current

architectures, although even here a performance sacrifice of a factor of 3 to 4 exists due to

inadequate memory bandwidth, except on computers specially customized for this problem.

The key challenge is the difficulty building and maintaining complex application software.

The single programmer model is not sustainable, and a multidisciplinary team approach is

not only desirable but also essential, given the level of complexity present in modern high-

end applications. Although new and efficient algorithms are also needed, the key algorithms

challenge is not about algorithms per se, but finding ways to integrate models at different

length and time scales into holistic, multi-scale simulations. (See section 6.1 for a software per-

spective on this problem.)

Figure 8.1 shows an example of the importance of multi-scale simulations from nanoscience.

Each box represents an algorithm or application developed to model phenomena on the

length scale given by the axis. To fully understand systems of interest, we must integrate

models across the entire range of length scales.

71

FIGURE 8.1 Multi-Scale Computational Nanoscience Simulations

Source: M. S. Gutowski

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

8.3. Current System Limitations

Representatives of every discipline who attended the workshop cited inadequate memory

bandwidth as a critical limitation. Most disciplines also cited inadequate inter-processor com-

munication latency and bandwidth as critical system parameters, although there was consid-

erable dispersion in how much improvement is needed.

The lattice QCD community has carefully studied the relation of communication capabili-

ties to application performance. QCD applications employ a simple 4-D block decomposi-

tion of the simulated 4-D space-time volume. To fully overlap communication with compu-

tation, an inter-processor communication speed of 0.364 MF/L MB/s per processor is need-

ed, where MF is the sustained execution speed in megaflops/second of the QCD kernel per

processor, and L4 is the number of cells in one block. Given that most of the communication

is nearest neighbor in this application, this number serves as a lower limit for more commu-

nication-intensive applications, such as those with global elliptic solvers like cosmology and

material science.

Comparing application performance on a single processor versus on many processors pro-

vides a rough measure of the imbalance between processor and communication speeds on

current architectures. The disciplines surveyed report a degradation of performance in the

range of 2 to 10. Multiplying this by a typical factor of three required to achieve 50 percent

of peak on a single processor shows that the loss of productivity is somewhere in the range

of 6 to 30, depending on application.

8.4. Support Environment Requirements

Applications have become so complex that multidisciplinary teams of application and com-

puter scientists are needed to build and maintain them. The traditional software model of a

single programmer developing a monolithic code is no longer relevant at the high end and

cutting edge. In particular, large teams with diverse domain expertise are needed to integrate

multi-scale simulation models. No single person or small group has the requisite expertise.

This need is particularly acute in the magnetic fusion simulation community, where dozens

of component models have been developed for different pieces of the problem. New team

structures and new mechanisms to support distributed collaboration are needed, since the

intellectual effort is generally distributed, not centralized.

The data tsunami (i.e., the flood of both input and output data for HEC systems) is a second

challenge. Currently, terabytes per day of experimental data are being collected and archived

at HEC centers for biological/biomedical research, weather prediction, high energy physics,

earth and space science, and other uses. This number is limited mainly by detector technolo-

gy and network communication bandwidths. Flagship projects such as NASA’s Earth

Observing System, DOE’s Genomes to Life, and NSF’s National Virtual Observatory antici-

72

pate data collection rates growing by at least two orders of magnitude by decade’s end. Many

of today’s high-end numerical simulations also produce terabytes per run spread over many

days. With the anticipated increases in computer capability discussed here, individual simula-

tions will produce terabytes per day within five years.

Massive, shared-memory architectures with greater I/O capabilities are needed for data

assimilation, analysis, and mining. The motivation for shared-memory systems is that many

data ingest or analysis codes are sequential, legacy codes. Although these codes could be paral-

lelized, developing and validating new implementations is often perceived as a poor use of

human resources. The capabilities of such shared-memory systems must match the capabili-

ties of the HEC systems they serve. A poll of working group participants suggests that a data

analysis server should have no less than one-quarter of the memory and compute capacity of

the full HEC system, and roughly the same I/O bandwidth to mass store.

Establishing computational "end stations" is one integrated solution to the needs of devel-

opers and users. This is an analogy to the organization of high-end experimental facilities

(see Figure 8.2 for an illustration). In experimental science, users interface with a national

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g 73

FIGURE 8.2 Facilities Support for Computational Science

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

user facility via end stations that house instruments and their associated instrument

specialists.

Application codes and their associated analysis tools are the instruments of computational

science. The developers of these applications can be likened to instrument specialists, in that

they possess the most detailed knowledge of the applications’ capabilities and usage. Unlike

experimental science, however, the computational end stations need not be located at the

HEC facilities. In fact, they need not be centralized at all, but may be distributed research

networks, as are emerging in many fields. Within this facilities analogy, HEC users in the

form of collaborative research teams would interface primarily with the application special-

ists within domain-specific research networks that develop, optimize, and maintain the rele-

vant applications.

74

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

PROCUREMENT, ACCESSIBILITY, AND
COST OF OWNERSHIP

Frank Thames, Chair

NASA Langley Research Center

James Kasdorf, Vice Chair

Pittsburgh Supercomputing Center

The requirements specifications, along with establishment and application of sound and pre-

cise evaluation criteria and the selection of appropriate contract vehicles, are the most impor-

tant elements of system procurements. Each is discussed in some detail below, along with

some comments on improving the overall acquisition process and some miscellaneous items.

9.1. Procurement

9.1.1. Requirements Specification
The most important specification is to elucidate precisely the fundamental science require-

ment(s) the proposed system must satisfy. This is key to a vendor’s understanding of the

computer system requirements and details of the desired application environment.

Prospective vendors should be encouraged to hold discussions with the intended user com-

munity to gain a full understanding of the desired environment.

The specification of leading-edge, high-end computing systems is not an exact science, and it

should not be treated as such. The specifications should strongly emphasize functional

requirements rather than detailed technical implementations. Similarly, one should avoid

over-specifying the requirements for advanced systems. Because the desired system may not

exist at the time the acquisition process is initiated, mandatory requirements should be cho-

sen with great care or, preferably, replaced with requirements weighted to convey their rela-

tive importance. Similarly, procurements should consider permitting reasonable flexibility in

specifying delivery dates.

Because vendors often reply to multiple solicitations simultaneously, overly aggressive deliv-

ery schedules may force some vendors to no-bid a solicitation. Federal solicitations require

competition. Thus, it is unwise to cite requirements that may limit, or even eliminate, compe-

tition. The best procurements are those that draw the maximum participation from the HEC

vendor community. Because these procurements deal with very advanced systems, it is wise to

employ flexible, and even novel, acquisition approaches. For example, the use of vendor/cus-

tomer technical partnerships is particularly appropriate, as is the use of contract options to

permit flexible deliveries. Lastly, one should consider carefully the fundamental differences

in the specifications for systems with diverse uses (e.g., capability or capacity uses).

75

9

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

9.1.2. Evaluation Criteria
Evaluation criteria dominate acquisitions because they define customer priorities; one of

these critical criteria is cost. The appropriate cost metric might be that of Total Cost of

Ownership — that is, the total life-cycle cost of acquiring, installing, operating, and dispos-

ing of large HEC systems. Suggested elements of the total ownership cost are covered in

detail below.

From a technical standpoint, it is paramount that "real" benchmarks be used to categorize

system performance. This is not the simplest of tasks even for short-term contracts. For

longer-term procurements where the "real" benchmarks may not be known, the customer

should specify required application speedup. This provides flexibility, as customers often can

project the general level of increase in application complexity.

As discussed in chapter 7, benchmarking can be expensive for vendors, so it is best not to

push very hard on difficult benchmarks. Should the expense become too great, some ven-

dors may choose not to participate in a given acquisition opportunity. As HEC systems

become larger and even more complex, a composite of application benchmarks may be inad-

equate to accurately measure system performance. This implies that benchmarks must be

rethought to ensure that the desired system is acquired. Because high-end systems are often

difficult to specify, and they occupy a small market segment, customers should use a best-

value approach in their evaluations (i.e., a balance between cost of ownership and technical

performance).

Finally, as in all acquisitions, risk should be evaluated. Risks take multiple forms, and the ones

cogent to the particular acquisition should be considered. Risk types include schedule, tech-

nical, and cost. Evaluating risk is not easy and is often somewhat subjective. Nevertheless, it is

very important, particularly for HEC systems.

9.1.3. Contract Type
Most government and private entities use multiple contract types that depend on many fac-

tors. However, they are normally tailored to both requirements and market diversity. For

long-term, leading-edge HEC procurements, a cost-plus contract format is preferred. This is

particularly true for contracts that are developmental (i.e., contracts where it is difficult to

document and categorize all risks). The General Services Administration provides a variety

of contracts that any federal agency can use. The use of existing vehicles can lead to substan-

tially lower life-cycle costs; full-blown, competitive procurements are time-consuming and,

hence, quite costly.

9.1.4. Process Improvement
The working group identified four cogent elements in process improvement. First, HEC pro-

curers should consider employing the "DARPA Process" for HEC acquisitions. This process

has two principal features:

76

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

• It has an "R&D" flavor; that is, it is low on detailed specifics and long on desired out-

comes.

• It features multiple awards and down selects to move from development to prototype

and/or production systems.

The second process improvement concerns acquisition schedule. Because both customers

and vendors are likely to be engaged in multiple acquisitions, all parties must attempt to

adhere to a rigid schedule. This not only lowers cost, but also promotes maximum vendor

participation. The third suggestion was that the customers engage users in the acquisition

process from the very earliest stages. This reduces vendor risk and provides users with "deci-

sion proximity." Lastly, it is strongly suggested that open communications between cus-

tomers and vendors be maintained for as long as legally practical and openly fair.

9.1.5. Other Considerations
There was unanimous agreement among the working group that the federal government

should not employ a single acquisition for all federal HEC systems. This would lead to a user

disconnect and lead to the inevitable "Ivory Tower" syndrome that is counterproductive in a

development-oriented environment like HEC. The lesson is not to "over-centralize." Yet

another concern was inconsistency in the way government procurement regulations are

interpreted and implemented, even within the same agency. Such inconsistencies lead to gen-

eral confusion, longer schedules, and increased cost.

The working group was asked to comment on any factors they felt were important in the

revitalization of the HEC industry. The group provided two summary recommendations:

• The market should be composed of multiple vendors (greater than three), each with an

annual business base in excess of several hundred million dollars. This business base is

necessary to maintain the high level of technical investments needed to remain competi-

tive in the technically sensitive HEC market.

• The HEC market is not large (~$1B/year); however, to remain commercially viable,

these companies must have adequate returns.

9.2. Accessibility

The working group generally felt that accessibility was not a compelling issue. In summary,

the findings were that there are many standard vehicles to use to implement interagency

agreements to provide HEC accessibility.

• Suggested process: Current large suppliers (e.g., NSF, DoD HPC Modernization) would

add additional capacity to existing sites to service the needs of agencies with smaller

requirements that are insufficient to justify large expenditures for a sustaining HEC

infrastructure.

77

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

• Implementation suggestion: Consider a single point of contact for federal agencies to go to

for accessibility suggestions (not implementation). The NCO would be a logical choice

as they are cognizant of federal IT R&D.

• Critical issue: The requiring agency must have designated, multiple-year funds to purchase

HEC computational capabilities from the large suppliers. HEC capability cannot be pur-

chased "by the yard." There must be sustaining commitments.

9.3. Cost of Ownership

The working group identified several factors related to total cost of ownership. For easy ref-

erence, these factors are consolidated in Table 9.1.

78

FACTOR TYPE COMMENTS

Procurement of Capital Asset
- Hardware
- Software licenses One-time Implementation of procurement
- Workforce
- Cost of money For LTOPs

Maintenance of Capital Assets
- Hardware Recurring
- Software licenses

Services Workforce dominated; will inflate yearly (~4%)
- System administration
- Application support/porting Recurring
- Operations
- Security

Facility
- HVAC
- Electrical power Recurring
- Maintenance
- Initial construction If required
- Floor space

Networks
- Local Area Network Recurring
- Wide Area Network

Training Recurring
Miscellaneous
- Insurance Recurring
- Disposal of capital assets One-time
- Lost opportunity Both See text

TABLE 9.1 Total Cost of Ownership Factors

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

One item in Table 9.1 related to lost opportunity costs requires some elaboration. These costs

are difficult to quantify and anticipate; however, because they can be high, they should be

given careful thought. Although lost opportunity costs vary significantly, here are some sug-

gestions for the costs being considered:

• Lost research opportunities due to excessive downtime or inappropriate system architec-

ture.

• Low user productivity due to lack of application programming tools.

• Legacy codes not optimized for "new" system architecture.

Overall, one can attribute many of these costs to the substantial difficulty in evaluating sys-

tem and application support tools, which affects productivity for application code develop-

ment as well as production computing.

79

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g80

10

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

REFERENCES

[1] D. H. Ahn, J. S. Vetter, "Scalable Analysis Techniques for Microprocessor

Performance Counter Metrics," Proceedings of SC 2002, IEEE, Nov. 2002.

[2] R. P. Bosch Jr., "Using Visualization to Understand the Behavior of Computer

Systems," Stanford University Ph.D. dissertation, August 2001.

[3] S. Browne, J. Dongarra, G. Ho, N. Garner, P. Mucci, "A Portable Programming

Interface for Performance Evaluation on Modern Processors," International Journal of

High Performance Computing Applications, vol. 14, No. 3, Fall 2000, pp. 189-204.

[4] L. Carrington, A. Snavely, N. Wolter, X. Gao, "A Performance Prediction Framework

for Scientific Applications," Workshop on Performance Modeling and Analysis, ICCS,

Melbourne, June 2003.

[5] B. L. Chamberlain, E. C. Lewis, and L. Snyder, "Array Language Support for Wavefront

and Pipelined Computations," in Workshop on Languages and Compilers

for Parallel Computing, August 1999.

[6] C. Chang, K. Kuusilinna, B. Richards, and R.W. Brodersen, "Implementation of BEE: A

Real-time Large-Scale Hardware Emulation Engine," Proceedings of FPGA 2003,

pp. 91-99, February 2003.

[7] A. Chauhan, C. McCosh, K. Kennedy, and R. Hanson, "Automatic Type-Driven Library

Generation for Telescoping Languages," SC03, to appear.

[8] D. Chen, N. H. Christ, C. Cristian, Z. Dong, A. Gara, K. Garg, B. Joo, C. Kim, L.

Levkova, X. Liao, R. D. Mawhinney, S. Ohta and T. Wettig, "QCDOC: A 10-Teraflops

Scale Computer for Lattice QCD," Nucl.Phys.Proc.Suppl. 94 (2001) pp. 825-832.

[9] W. Chen, D. Bonachea, J. Duell, P. Husbands, C. Iancu, K. Yelick, "A Performance

Analysis of the Berkeley UPC Compiler," 17th Annual International Conference on

Supercomputing (ICS), 2003.

[10] J. Dongarra and V. Eijkhout, "Self Adapting Numerical Algorithm for Next

Generation Applications," International Journal of High Performance Computing

Applications, vol. 17, no. 2, pp. 125-132.

[11] M. Frigo and S. Johnson, "FFTW: An Adaptive Software Architecture for the FFT,"

Proceedings of the International Conference on Acoustics, Speech, and Signal Processing,

Seattle, WA, May 1998.

[12] R. Fujimoto, Parallel and Distributed Simulation Systems, Wiley Interscience, January

2000.

[13] J. Makino, T. Fukushige and M. Koga, "A 1.349 Tflops Simulation of Black Holes in a

Galactic Center on GRAPE-6," SC2000.

[14] A. Hoisie, O. Lubeck, H. Wasserman, "Performance and Scalability Analysis of

Teraflop-Scale Parallel Architectures Using Multidimensional Wavefront

Applications," The International Journal of High Performance Computing Applications,

vol. 14, no. 4 (Winter 2000).

[15] ITRS (International Technology Roadmap for Semiconductors),

http://public.itrs.net/, 2002.

81

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

[16] A. Jacquet, V. Janot, R. Govindarajan, C. Leung, G. Gao, and T. Sterling, "An

Executable Analytical Performance Evaluation Approach for Early Performance

Prediction," Proceedings of IPDPS’03, 2003.

[17] D. Jefferson, B. Beckman, F. Wieland, L. Blume, M. DiLoreto, P. Hontalas, P. Laroche, K.

Sturdevant, J. Tupman, V. Warren, J. Wedel, H. Younger, S. Bellenot, "Distributed

Simulation and the Time Warp Operating System," 11th Symposium on Operating

Systems Principles, Austin, TX, Nov., 1987.

[18] D. J. Kerbyson, H. Alme, A. Hoisie, F. Petrini, H. Wasserman, M. Gittings, "Predictive

Performance and Scalability Modeling of a Large-Scale Application," Proceedings of

SC2001, IEEE, November 2001.

[19] M. Mathis, D. Kerbyson, A. Hoisie, "A Performance Model of Non-Deterministic

Particle Transport on Large-scale Systems," Workshop on Performance Modeling and

Analysis, ICCS, Melbourne, June 2003.

[20] D. J. Kerbyson, H. J. Wasserman, A. Hoisie, "Exploring Advanced Architectures Using

Performance Prediction," in Innovative Architecture for Future Generation High-

Performance Processors and Systems, IEEE Computer Society Press, 2002, pp. 27-37.

[21] B. P. Miller, M. D. Callaghan, J. Cargille, J. K. Hollingsworth, R. B. Irbin, K. Karavanic, K.

Kunchithapadam, T. Newhall, "The Paradyn Parallel Performance Measurement

Tools," IEEE Computer, vol. 28 (1995), no. 11, pp. 37-46.

[22] R. Numrich and J. Reid, "Co-Array Fortran for Parallel Programming," ACM Fortran

Forum, vol. 17, No. 2, pp. 1-31, 1998.

[23] D. Quinlan, M. Schordan, B. Philip and Kowarschik, M., "Parallel Object-Oriented

Framework Optimization," to appear in Special Issue of Concurrency: Practice and

Experience, 2003.

[24] M. Rosenblum, "SimOS," available at http://simos.stanford.edu.

[25] J. S. Shapiro, N. Hardy, "EROS: A Principle-Driven Operating System from the

Ground Up," IEEE Software, January/February 2002.

[26] A. Snavely, L. Carrington, N. Wolter, J. Labarta, R. Badia A. Purkayastha, "A Framework

for Performance Modeling and Prediction," Proceedings of SC2002, IEEE, Nov. 2002.

[27] Tapus, C., I.-H. Chung, and J.K. Hollingsworth, "Active Harmony: Towards Automated

Performance Tuning," in Proceedings of SC2002, IEEE, Nov. 2002.

[28] J. S. Vetter, "Performance Analysis of Distributed Applications Using Automatic

Classification of Communication Inefficiencies," Proceedings of the ACM International

Conference on Supercomputing (ICS), ACM Press, 2000.

[29] J. S. Vetter, P. Worley, "Asserting Performance Expectations," Proceedings of SC2002,

IEEE, Nov. 2002.

[30] M. Wang, T. Madhyastha, N. H. Chan, S. Papadimitriou, C. Faloutsos, "Data Mining

Meets Performance Evaluation: Fast Algorithms for Modeling Bursty Traffic,

International Conference on Data Engineering, 2001.

[31] A. T. Wong, L. Oliker, W. T. C. Kramer, T. L. Kaltz and D. H. Bailey, "ESP: A System

Utilization Benchmark," Proceedings of SC2000, Nov. 2000.

[32] L. Zhang, Z. Fang, M. Parker, B.K. Mathew, L. Schaelicke, J.B. Carter, W.C. Hsieh, and

S.A. McKee, "The Impulse Memory Controller," IEEE Transactions on Computers,

pp. 1117-1132, November 2001.

82

Appendix A

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

PROGRAM COMMITTEE MEMBERS

Kamal Abdali, National Science Foundation

Greg Astfalk, Hewlett-Packard

Andy Bernat, Computing Research Association

Walt Brooks, NASA Ames Research Center

George Cotter, National Security Agency

Jack Dongarra, University of Tennessee

Julio Facelli, University of Utah

Stuart Feldman, IBM

John Gustafson, SUN Microsystems

John Grosh, Department of Defense

Cray Henry, Department of Defense

Rich Hirsh, National Science Foundation

Fred Johnson, Department of Energy

Alan Laub, Department of Energy

Paul Messina, Argonne National Laboratory

Jose Munoz, Department of Energy

David Nelson, National Coordination Office

Michael Norman, University of California at San Diego

Robert Peterkin, Department of Defense

Dan Reed, National Center for Supercomputing Applications (Workshop Chair)

Steve Reinhardt, SGI

John van Rosendale, DOE Office of Science

Horst Simon, Lawrence Berkeley National Laboratory

Thomas Sterling, Caltech/JPL

Robert Sugar, University of California at Santa Barbara

Frank Thames, NASA Langley Research Center

Gary Wohl, National Weather Service

83

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g84

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

WORKING GROUP CHARTERS
AND PARTICIPANTS

The workshop was organized as a set of eight working groups, each with a specific technical

charge. To balance participation across the working groups, the organizers initially assigned

members to each group, based on their expression of interests. At the workshop, we allowed

participants to shift groups, based on discussions at the meeting.

B.1. Enabling Technologies

B.1.1. Charter
Establish the basic technologies that may provide the foundation for important advances in

HEC capability and determine the critical tasks required before the end of this decade to

realize their potential. Such technologies include hardware devices or components and the

basic software approaches and components needed to realize advanced HEC capabilities.

Questions:

• Provide information about key technologies that must be advanced to strengthen the

foundation for developing new generations of HEC systems. Include discussion of

promising novel hardware and software technologies with potential payoff for HEC.

• Provide a brief technology maturity roadmap and investment strategy with discussion

of costs to develop these technologies.

B.1.2. Participants
Sheila Vaidya, Lawrence Livermore National Laboratory (chair)

Stuart Feldman, IBM (vice chair)

Kamal Abdali, NSF

Fernand Bedard, NSA

Herbert Bennett, NIST

Ivo Bolsens, XILINX

Jon Boyens, Department of Commerce

Bob Brodersen, University of California at Berkeley

Yolanda Comedy, IBM

Loring Craymer, Jet Propulsion Laboratory

Martin Deneroff, SGI

Bronis de Supinski, Lawrence Livermore National Laboratory

Sue Fratkin, CASC

David Fuller, JNIC/Raytheon

Gary Hughes, NSA

Kevin Martin, Georgia Institute of Technology

Tyce McLarty, Lawrence Livermore National Laboratory

85

Appendix B

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

Virginia Moore, National Coordination Office

Ahmed Sameh, Purdue University

John Spargo, Northrop-Grumman

William Thigpen, NASA Ames Research Center

Uzi Vishkin, University of Maryland

Steven Wallach, Chiaro Networks

B.2. COTS-Based Architectures

B.2.1. Charter
Determine the capability roadmap of anticipated COTS-based HEC system architectures

through the end of the decade. Identify those critical hardware and software technology

and architecture developments required to both sustain continued growth and enhance

user support.

Questions

• Identify opportunities and challenges for anticipated COTS-based HEC systems archi-

tectures through the decade and determine the capability roadmap.

• Include alternative execution models, support mechanisms, local element and system

structures, and system engineering factors to accelerate rate of sustained performance

gain (time to solution), performance to cost, programmability, and robustness.

• Identify those critical hardware and software technology and architecture developments

required to both sustain continued growth and enhance user support.

B.2.2. Participants
Walt Brooks, NASA Ames Research Center (chair)

Steve Reinhardt, SGI (vice chair)

Erik DeBenedictis, Sandia National Laboratories

Yuefan Deng, Stony Brook University

Don Dossa, Lawrence Livermore National Laboratory

Guang Gao, University of Delaware

Steven Gottlieb, Indiana University

Richard Hilderbrandt, National Science Foundation

Curt Janssen, Sandia National Laboratories

Bill Kramer, NERSC/LBNL

Charles Lefurgy, IBM

Greg Lindahl, Key Research

Tom McWilliams, Key Research

Rob Schreiber, Hewlett-Packard

Burton Smith, Cray

Stephen Wheat, Intel

John Ziebarth, Los Alamos National Laboratory

86

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

B.3. Custom Architectures

B.3.1. Charter
Identify opportunities and challenges for innovative HEC system architectures, including

alternative execution models, support mechanisms, local element and system structures, and

system engineering factors to accelerate rate of sustained performance gain (time to solu-

tion), performance to cost, programmability, and robustness.

Establish a roadmap of advanced-concept alternative architectures likely to deliver dramatic

improvements to user applications through the end of the decade. Specify those critical

developments achievable through custom design necessary to realize their potential.

Questions:

• Present driver requirements and opportunities for innovative architectures demanding

custom design.

• Identify key research opportunities in advanced concepts for HEC architecture.

• Determine research and development challenges to promising HEC architecture strate-

gies.

• Project brief roadmap of potential developments and impact through the end of the

decade.

• Specify impact and requirements of future architectures on system software and pro-

gramming environments.

B.3.2. Participants
Peter Kogge, University of Notre Dame (chair)

Thomas Sterling, California Institute of Technology and NASA JPL (vice chair)

Duncan Buell, University of South Carolina

George Cotter, National Security Agency

William Dally, Stanford University

James Davenport, Brookhaven National Laboratory

Jack Dennis, Massachusetts Institute of Technology

Mootaz Elnozahy, IBM

Bill Feiereisen, Los Alamos National Laboratory

David Fuller, JNIC

Michael Henesey, SRC Computers

David Kahaner, ATIP

Norm Kreisman, DOE

Grant Miller, National Coordination Office

Jose Munoz, DOE NNSA

Steve Scott, Cray

Vason Srini, University of California, Berkeley

Gus Uht, University of Rhode Island

87

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

Keith Underwood, Sandia National Laboratories

John Wawrzynek, University of California, Berkeley

B.4. Runtime and Operating Systems

B.4.1. Charter
Establish baseline capabilities required in the operating systems for projected HEC systems

scaled to the end of this decade and determine the critical advances that must be undertaken

to meet these goals. Examine the potential, expanded role of low-level runtime system com-

ponents in support of alternative system architectures.

Questions:

• Establish principal functional requirements of operating systems for HEC systems of

the end of the decade.

• Identify current limitations of OS software and determine initiatives required to address

them.

• Discuss the role of open source software for HEC community needs and issues associat-

ed with development/maintenance/use of open source.

• Examine the future role of runtime system software in the management/use of HEC

systems containing from thousands to millions of nodes.

B.4.2. Participants
Rick Stevens, Argonne National Laboratory (chair)

Ron Brightwell, Sandia National Laboratories (vice chair)

Robert Ballance, University of New Mexico

Jeff Brown, Los Alamos National Laboratory

Deborah Crawford, NSF

Wes Felter, IBM

Gary Grider, Los Alamos National Laboratory

Leslie Hart, NOAA

Thuc Hoang, Department of Energy

Barney Maccabe, University of New Mexico

Ron Minnich, Los Alamos National Laboratory

D.K. Panda, Ohio State University

Keshav Pingali, Cornell University

Neil Pundit, Sandia National Laboratories

Dan Reed, NCSA, University of Illinois

Asaph Zemach, Cray

88

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

B.5. Programming Environments and Tools

B.5.1. Charter
Address programming environments for both existing legacy codes and alternative program-

ming models to maintain continuity of current practices, while also enabling advances in

software development, debugging, performance tuning, maintenance, interoperability, and

robustness. Establish key strategies and initiatives required to improve time to solution and

ensure the viability and sustainability of applying HEC systems by the end of the decade.

Questions:

• Assume two possible paths to future programming environments: a) incremental evolu-

tion of existing programming languages and tools consistent with portability of legacy

codes, and b) innovative programming models that dramatically advance user productiv-

ity and system efficiency/performance.

• Specify requirements of programming environments and programmer training consis-

tent with incremental evolution, including legacy applications.

• Identify required attributes and opportunities of innovative programming methodolo-

gies for future HEC systems.

• Determine key initiatives to improve productivity and reduce time to solution along

both paths to future programming environments.

B.5.2. Participants
Dennis Gannon, Indiana University (chair)

Richard S. Hirsh, National Science Foundation (vice chair)

Rob Armstrong, Sandia National Laboratories

David Bader, University of New Mexico

David Bernholdt, Oak Ridge National Laboratory

David Callahan, Cray

William Carlson, IDA Center for Computing Sciences

Siddhartha Chatterjee, IBM

Thomas Cormen, Dartmouth College

Tamara Dahlgren, Lawrence Livermore National Laboratory

Wael Elwasif, Oak Ridge National Laboratory

Thomas Epperly, Lawrence Livermore National Laboratory

Howard Gordon, Center for Computing Sciences

John Hall, Los Alamos National Laboratory

Daryl Hess, NSF

Laxmikant Kale, University of Illinois

Charles Koelbel, Rice University

Gary Kumfert, Lawrence Livermore National Laboratory

John Levesque, Cray

Lois Curfman McInnes, Argonne National Laboratory

89

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

Jarek Nieplocha, Pacific Northwest National Laboratory

Matthew Rosing, PeakFive

Suresh Shukla, Boeing

Anthony Skjellum, MPI-Software Technology

Lawrence Snyder, University of Washington

Alexander Veidenbaum, University of California, Irvine

Xiaodong Zhang, National Science Foundation

Hans Zima, NASA Jet Propulsion Laboratory

B.6. Performance Modeling, Metrics, and Specifications

B.6.1. Charter
Establish objectives of future performance metrics and measurement techniques to charac-

terize system value and productivity to users and institutions. Identify strategies for evalua-

tion including benchmarking of existing and proposed systems in support of user applica-

tions. Determine parameters for specification of system attributes and properties.

Questions:

• As input to HECRTF charge, provide information about the types of system design

specifications needed to effectively meet various application domain requirements.

• Examine current state and value of performance modeling and metrics for HEC and rec-

ommend key extensions.

• Analyze performance-based procurement specifications for HEC that lead to appropri-

ately balanced systems.

• Recommend initiatives needed to overcome current limitations in this area.

B.6.2. Participants
David H. Bailey, Lawrence Berkeley National Laboratory (chair)

Allan Snavely, San Diego Supercomputer Center (vice chair)

Steven Ashby, Lawrence Livermore National Laboratory

Maurice Blackmon, UCAR

Patrick Bohrer, IBM

Kirk Cameron, University of South Carolina

Carleton DeTar, University of Utah

Jack Dongarra, University of Tennessee

Douglas Dwoyer, NASA Langley Research Center

Wesley Felter, IBM

Peter Freeman, National Science Foundation

Ahmed Gheith, IBM

Brent Gorda, Lawrence Berkeley National Laboratory

Guy Hammer, DOD-MDA

Jeremy Kepner, MIT

90

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

David Koester, MITRE

Sally McKee, Cornell University

David Nelson, National Coordination Office

Jeffrey Nichols, Oak Ridge National Laboratory

Keith Shields, Cray

Jeffrey Vetter, Lawrence Livermore National Laboratory

Theresa Windus, Pacific Northwest National Laboratory

Patrick Worley, Oak Ridge National Laboratory

B.7. Application-Driven System Requirements

B.7.1. Charter
Identify major classes of applications likely to dominate HEC system usage by the end of the

decade. Determine machine properties (floating point performance, memory, interconnect

performance, I/O capability and mass storage capacity) needed to enable major progress in

each of the classes of applications. Discuss the impact of system architecture on applications.

Determine the software tools needed to enable application development and support for

execution. Consider the user support attributes including ease of use required to enable

effective use of HEC systems.

Questions:

• Identify major classes of applications likely to dominate use of HEC systems in the com-

ing decade, and determine the scale of resources needed to make important progress. For

each class indicate the major hardware, software, and algorithmic challenges.

• Determine the range of critical systems parameters needed to make major progress on

the applications that have been identified. Indicate the extent to which system architec-

ture affects productivity for these applications.

• Identify key user environment requirements, including code development and perform-

ance analysis tools, staff support, mass storage facilities, and networks.

B.7.2 Participants
Michael Norman, University of California at San Diego (chair)

John van Rosendale, Department of Energy (vice chair)

Don Batchelor, Oak Ridge National Laboratory

Bert de Jong, Pacific Northwest National Laboratory

David Dixon, Pacific Northwest National Laboratory

Howard (Flash) Gordon, National Security Agency

Maciej Gutowski, Pacific Northwest National Laboratory

Theresa Head-Gordon, Lawrence Berkeley National Laboratory

Steve Jardin, Princeton University

Peter Lyster, National Institutes of Health

Mike Merrill, National Security Agency

91

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

T.P. Straatsma, Pacific Northwest National Laboratory

Robert Sugar, University of California, Santa Barbara

Francis Sullivan, IDA/CCS

Theresa Windus, Pacific Northwest National Laboratory

Paul Woodward, University of Minnesota

B.8. Procurement, Accessibility, and Cost of Ownership

B.8.1. Charter
Explore the principal factors affecting acquisition and operation of HEC systems through

the end of this decade. Identify those improvements required in procurement methods and

means of user allocation and access. Determine the major factors that contribute to the cost

of ownership of the HEC system over its lifetime. Identify impact of procurement strategy

including benchmarks on sustained availability of systems.

Questions:

• Evaluate the implications of the virtuous infrastructure cycle – i.e., the relationship

among the advanced procurement development and deployment for shaping research,

development, and procurement of HEC systems.

• Provide information about total cost of ownership beyond procurement cost, including

space, maintenance, utilities, upgradability, etc.

• Provide information about how the Federal Government can improve the processes of

procuring and providing access to HEC systems and tools.

B.8.2. Participants
Frank Thames, NASA (chair)

Jim Kasdorf, Pittsburgh Supercomputing Center (vice chair)

Eugene Bal, Maui High Performance Computing Center

Rene Copeland, Platform Computing Federal, Inc.

Candace Culhane, National Security Agency

Charles Hayes, HCS

Cray Henry, DOD High-Performance Computing Modernization Office

Christopher Jehn, Cray

Sander Lee, DOE/NNSA

Matt Leininger, Sandia National Laboratories

Paul Muzio, Network Computing Service

Graciela Narcho, National Science Foundation

Per Nyberg, Cray

Thomas Page, National Security Agency

Steven Perry, Cray

Mark Seager, Lawrence Livermore National Laboratory

Charles Slocomb, Los Alamos National Laboratory

92

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

Dale Spangenberg, National Institute of Science and Technology

Scott Studham, Pacific Northwest National Laboratory

James Tomkins, Sandia National Laboratories

William Turnbull, NOAA

Gary Walter, Environmental Protection Agency

W. Phil Webster, NASA

Gary Wohl, National Weather Service

Thomas Zacharia, Oak Ridge National Laboratory

93

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g94

Appendix C

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

LIST OF ATTENDEES

95

Kamal Abdali

National Science Foundation

Stanley C. Ahalt

Ohio State University/Ohio Supercomputer

Center

Rob Armstrong

Sandia National Labs

Steven F. Ashby

Lawrence Livermore National Lab

David A. Bader

University of New Mexico

David H. Bailey

Lawrence Berkeley National Lab

Eugene Bal

Maui High Performance Computing Center

Robert A. Ballance

University of New Mexico

Donald B. Batchelor

Oak Ridge National Lab

Fernand D. Bedard

NSA

Herbert S. Bennett

NIST

Keren Bergman

Columbia University, EE Dept.

Andrew Bernat

Computing Research Association

David E. Bernholdt

Oak Ridge National Lab

Gyan V. Bhanot

IBM Research

Bryan A. Biegel

NASA Ames Research Center

Rupak Biswas

NASA Ames Research Center

Maurice L. Blackmon

UCAR

Patrick J. Bohrer

IBM

Ivo Bolsens

XILINX

Jon M. Boyens

U.S. Dept. of Commerce

Ron B. Brightwell

Sandia National Labs

Robert W. Brodersen

University of California, Berkeley

Walter Brooks

NASA Ames Research Center

Jeffrey S. Brown

LANL

Duncan A. Buell

University of South Carolina

David Callahan

Cray

Kirk Cameron

University of South Carolina

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

William W. Carlson

IDA Center for Computing Sciences

Siddhartha Chatterjee

IBM T.J. Watson Research Center

Yolanda L. Comedy

IBM, Governmental Programs

Rene G. Copeland

Platform Computing Federal, Inc.

Thomas H. Cormen

Dartmouth College

George R. Cotter

National Security Agency

Deborah L. Crawford

National Science Foundation

Loring G. Craymer

Jet Propulsion Lab

Candace S. Culhane

National Security Agency

Tamara L. Dahlgren

Lawrence Livermore National Lab

William J. Dally

Stanford University

James Davenport

Brookhaven National Lab

Bert de Jong

Pacific Northwest National Lab

Bronis R. de Supinski

Lawrence Livermore National Lab, CASC

Erik P. DeBenedictis

Sandia National Labs

Martin M. Deneroff

Silicon Graphics, Inc.

Yuefan Deng

Stony Brook University

Jack B. Dennis

MIT Lab for Computer Science

Carleton DeTar

University of Utah

Judith E. Devaney

NIST

David A. Dixon

Pacific Northwest National Lab

Jack J. Dongarra

University of Tennessee

Don Dossa

Lawrence Livermore National Lab

Thom H. Dunning, Jr.

UT/ORNL Joint Institute for

Computational Science

Douglas L. Dwoyer

NASA Langley Research Center

Mootaz Elnozahy

IBM Austin Research Lab

Wael R. Elwasif

Oak Ridge National Lab

Thomas M. Engel

NCAR

Thomas G.W. Epperly

Lawrence Livermore National Lab

William J. Feiereisen

Los Alamos National Lab/CCS Division

Stuart I. Feldman

IBM

96

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

Wesley M. Felter

IBM Austin Research Lab

James R. Fischer

NASA/Goddard Space Flight Ctr.

Susan Fratkin

CASC

Njema J. Frazier

U.S. Dept. of Energy/NNSA

Peter A. Freeman

National Science Foundation

David A. Fuller

Joint National Integration Ctr.

Dennis Gannon

Indiana University

Guang R. Gao

Delaware Biotechnology Institute,

University of Delaware

Ahmed Gheith

IBM

Eng Lim Goh

Silicon Graphics, Inc.

Brent C. Gorda

Lawrence Berkeley National Lab

Howard Gordon

NSA

Steven A. Gottlieb

Indiana University

Robert B. Graybill

DARPA

Gary A. Grider

Los Alamos National Lab

John Grosh

DoD/OSD

Brian D. Gross

U.S. DOC/NOAA/GFDL, Princeton

University

Maciej S. Gutowski

Pacific Northwest National Lab

John H. Hall

Los Alamos National Lab

Guy S. Hammer

DOD Missile Defense Agency

Leslie B. Hart

NOAA/FSL

Charles W. Hayes

HCS

Theresa Head-Gordon

Lawrence Berkeley National Lab

Michael J. Henesey

SRC Computers, Inc.

Cray J. Henry

DoD High Performance Computing

Modernization Office

Daryl W. Hess

National Science Foundation, MPS/DMR

Richard L. Hilderbrandt

ACIR/CISE/NSF

Phil Hilliard

National Academies, CSTB

Richard S. Hirsh

ACIR/CISE/NSF

Daniel A. Hitchcock

U.S. Dept of Energy

97

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

Thuc T. Hoang

DOE/NNSA

Adolfy Hoisie

Los Alamos National Lab

Sally E. Howe

National Coordination Office, ITRD

Gary D. Hughes

National Security Agency

Curtis L. Janssen

Sandia National Labs

Stephen C. Jardin

Princeton Plasma Physics Lab

Christopher Jehn

Cray

Gary M. Johnson

U.S. Dept. of Energy, Office of Science

Frederick C. Johnson

U.S. Dept. of Energy, Office of Science

Tina M. Kaarsberg

U.S. House of Representatives

David K. Kahaner

Asian Technology Information Program

Laxmikant V. Kale

University of Illinois, Urbana Champaign

James R. Kasdorf

Pittsburgh Supercomputing Center

Jeremy V. Kepner

MIT Lincoln Lab

Kirk T. Kern

Silicon Graphics, Inc.

Frankie D. King

NCO/ITRD

Charles H. Koelbel

Rice University

David Koester

MITRE

Peter M. Kogge

University of Notre Dame

William T.C. Kramer

NERSC/LBNL

Norman H. Kreisman

U.S. Dept. of Energy

Gary K. Kumfert

CASC/LLNL

Alan J. Laub

SciDAC, DOE Office of Science

Sander L. Lee

DOE/NNSA

Charles R. Lefurgy

IBM

Matt L. Leininger

Sandia National Labs

John M. Levesque

Cray

Greg B. Lindahl

Key Research, Inc.

Peter M. Lyster

National Institutes of Health

Arthur B. Maccabe

University of New Mexico, HPC

Kevin P. Martin

Georgia Institute of Technology

Clyde William McCurdy

Lawrence Berkeley National Lab

98

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

Lois Curfman McInnes

Argonne National Lab, MCS Division

Sally A. McKee

Cornell University

Tyce T. McLarty

Lawrence Livermore National Lab

Thomas M. McWilliams

Key Research, Inc.

Stephen P. Meacham

National Science Foundation

Bob Meisner

U.S. Dept. of Energy/NNSA

Mike Merrill

NSA

Juan C. Meza

Lawrence Berkeley National Lab

Grant Miller

NCO/Noesis

Ronald G. Minnich

Los Alamos National Lab

Richard L. Moore

UCSD, San Diego Supercomputer Ctr.

Virginia Moore

NCO/ITRD

Frank Mueller

North Carolina State University

Jose L. Munoz

DOE/NNSA

Paul C. Muzio

Network Computing Service, Inc.

Graciela L. Narcho

National Science Foundation

David B. Nelson

National Coordination Office, ITRD

Jeff A. Nichols

Oak Ridge National Lab

Jarek Nieplocha

Pacific Northwest National Lab

Michael L. Norman

University of California, San Diego

Per E. Nyberg

Cray

George Ostrouchov

Oak Ridge National Lab

Thomas W. Page

National Security Agency

Dhabaleswar K. Panda

Ohio State University

Joel R. Parriott

OMB

Steven S. Perry

Cray

Keshav K. Pingali

Cornell University

Neil D. Pundit

Sandia National Labs

Karthick Rajamani

IBM Austin Research Lab

Daniel A. Reed

University of Illinois/NCSA

Steven P. Reinhardt

Silicon Graphics, Inc.

99

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

Joseph D. Retzer

US EPA, Office of Environmental

Information

Matthew Rosing

PeakFive

Robert D. Ryne

Lawrence Berkeley National Lab

Subhash Saini

NASA Ames Research Center

Nagiza F. Samatova

Oak Ridge National Lab

Ahmed H. Sameh

Purdue University

Barry I. Schneider

National Science Foundation, Physics

Division

Rob Schreiber

Hewlett Packard

Steven L. Scott

Cray

Mark K. Seager

Lawrence Livermore National Lab

Keith A. Shields

Cray

Suresh N. Shukla

The Boeing Company

Horst D. Simon

Lawrence Berkeley National Lab

Anthony Skjellum

MPI Software Technology, Inc.

Charles A. Slocomb

Los Alamos National Lab

Burton J. Smith

Cray

Allan Edward Snavely

San Diego Supercomputer Center

Lawrence Snyder

University of Washington, CSE

Dale Spangenberg

NIST/OD/CIO

John W. Spargo

Northrop-Grumman

Vason P. Srini

University of California, Berkeley

Thomas L. Sterling

California Institute of Technology

Rick L. Stevens

Argonne National Lab, MCS Division

G. Malcolm Stocks

Oak Ridge National Lab

T. P. Straatsma

Pacific Northwest National Lab

Michael R. Strayer

ORNL

Scott Studham

Pacific Northwest National Lab

Robert L. Sugar

University of California, Santa Barbara

Francis E. Sullivan

Center for Computing Sciences

Frank C. Thames

NASA Langley Research Center

William Thigpen

NASA Ames Research Center

100

Wo r k s h o p o n t h e R o a d m a p f o r t h e R e v i t a l i z a t i o n o f H i g h - E n d C o m p u t i n g

James L. Tomkins

Sandia National Labs

Jeroen Tromp

California Institute of Technology

William T. Turnbull

NOAA/HPCC Office

Augustus K. Uht

University of Rhode Island

Keith D. Underwood

Sandia National Labs

Sheila Vaidya

Lawrence Livermore National Lab

John R. van Rosendale

DOE, Office of Science

Alexander V. Veidenbaum

University of California, Irvine

Jeffrey S. Vetter

Lawrence Livermore National Lab

Uzi Vishkin

University of Maryland, IACS

Steven J. Wallach

Chiaro Networks

Gary L. Walter

U.S. EPA

Lee Ward

Sandia National Labs

John C. Wawrzynek

University of California, Berkeley

W. Phil Webster

NASA

Stephen R. Wheat

HPC Program Office, Intel Corp.

Barbara J. Wheatley

National Security Agency

Theresa L. Windus

Pacific Northwest National Lab

Gary M. Wohl

National Weather Service

Paul R. Woodward

University of Minnesota

Patrick H. Worley

Oak Ridge National Lab

Steven B. Yabusaki

Pacific Northwest National Lab

Thomas Zacharia

Oak Ridge National Lab

Asaph N. Zemach

Cray

Xiaodong Zhang

National Science Foundation

John P. Ziebarth

Los Alamos National Lab

Hans P. Zima

Jet Propulsion Lab

101

COMPUTING RESEARCH ASSOCIATION

1100 Seventeenth Street, NW, Suite 507

Washington, D.C. 20036-4632

(202) 234-2111; Fax: (202) 667-1066

E-mail: info@cra.org; URL: http://www.cra.org

