Search
CRA TumbleLog
Archives
October 2009
September 2009 August 2009 July 2009 June 2009 May 2009 April 2009 March 2009 February 2009 January 2009 December 2008 November 2008 October 2008 September 2008 August 2008 July 2008 June 2008 May 2008 April 2008 March 2008 February 2008 January 2008 December 2007 November 2007 October 2007 September 2007 August 2007 July 2007 June 2007 May 2007 April 2007 March 2007 February 2007 January 2007 December 2006 November 2006 October 2006 September 2006 August 2006 July 2006 June 2006 May 2006 April 2006 March 2006 February 2006 January 2006 December 2005 November 2005 October 2005 September 2005 August 2005 July 2005 June 2005 May 2005 April 2005 March 2005 February 2005 January 2005 December 2004 November 2004 October 2004 September 2004 August 2004 July 2004 June 2004 May 2004 April 2004 March 2004 February 2004 January 2004
Archives by Category
Action Alerts (2)
American Competitiveness Initiative (96) CRA (61) Computing Community Consortium (CCC) (22) Computing Education (6) Diversity in Computing (26) Economic Stimulus and Recovery (13) Events (34) FY06 Appropriations (13) FY07 Appropriations (32) FY08 Appropriations (37) FY09 Appropriations (28) FY10 Appropriations (1) Funding (204) Misc. (49) People (106) Policy (249) R&D in the Press (90) Research (85) Security (30)
Recent Entries
National CS Education Week
Prizes and Computing Research House S&T Committee Considers Cyber Security R&D President Obama Touts Role of Basic Research in Innovation Business Week on Research in Industry A Systems Approach to Improving K-12 STEM Education Healthcare Robotics Briefing CCC Announces New Networking Research Agenda NSF Shows Off Cyber-Physical Systems on the Hill New DARPA Director Announced
CRA Links
Computing Research News
CRA-Bulletin Computing Data and Resources CRA in the News Computing Research in the FY05 Budget
What We're Reading
Computational Complexity
CNSR Online Danger Room Defense Tech Freedom to Tinker InsideHPC Lessig Blog Nothing is as simple... Reed's Ruminations Schneier on Security Techdirt UMBC eBiquity Blog USACM Tech Policy Blog
Advocacy Materials
IT R&D One-pager (pdf)
DARPA and University Research One-pager (pdf) Cyber Security R&D One-pager (pdf) Current and Requested IT R&D Funding Charts (pdf)
Recent Testimony
|
August 11, 2005Thoughts on the "Science Gap" and the Appeal of ComputingThe Washington Post's Politics Columnist (and resident contrarian) Robert Samuelson has an interesting Op-Ed in yesterday's edition dealing with the fact that the U.S. is producing "a shrinking share of the world's technological talent." After noting that there's a pay disparity between science and engineering PhDs and other "elites" like MBAs, doctors and lawyers that probably leads to the production disparity, Samuelson rightly points out that the simple fact that other countries are producing more S&E PhDs doesn't mean that we necessarily lose. Not every new Chinese or Indian engineer and scientist threatens an American, through outsourcing or some other channel. Actually, most don't. As countries become richer, they need more scientists and engineers simply to make their societies work: to design bridges and buildings, to maintain communications systems, and to test products. This is a natural process. The U.S. share of the world's technology workforce has declined for decades and will continue to do so. By itself, this is not dangerous.Putting aside the fact that Samuelson apparently unwittingly puts his finger on the need for producing more US-born and naturalized S&E Phds -- after all, given current agency practices, they are essentially the only ones able to do the defense-related research that will preserve "America's advantage in weaponry" -- he's generally right on. The simple fact that other countries are producing S&E PhDs at rates higher than U.S. production isn't the worry. The worry is when America's global competition uses that newly-developed capacity for innovation and technological achievement to target sectors traditionally important to America's strategic industries. IT is one such crucial sector. As Samuelson points out, one way to insure the U.S. remains dominant, especially in a sector like IT, is to make sure the U.S. continues to attract the best minds in the world to come study and work here. Unfortunately, as we've noted frequently over the last couple of years, the environment for foreign students in the U.S. is not nearly as welcoming as it once was. Another is to nuture and grow our own domestically-produced talent in the discipline. But the challenges here are also tall. The most recent issue of the Communications of the ACM contains a very interesting (and on point) piece (pdf) about whether the computing community in the U.S. needs to do a better job of evangelizing what's truly exciting about the discipline to combat dropping enrollment rates and dropping interest in computing. The piece by Sanjeev Arora and Bernard Chazelle (thanks to Lance Fortnow for pointing it out on his excellent Computational Complexity blog), identifies the challenge: Part of the problem is the lack of consensus in the public at large on what computer science actually is. The Advanced Placement test is mostly about Java, which hurts the field by reducing it to programming. High school students know that the wild, exotic beasts of physics (black holes, antimatter, Big Bang) all roam the land of a deep science. But who among them are even aware that the Internet and Google also arose from an underlying science? Their list of computing "Greats" probably begins with Bill Gates and ends with Steve Jobs.A recent study by the Pew Internet Project demonstrates that American teenagers are tied to computing technology: 89 percent send or read e-mail; 84 percent visit websites about TV, music or sport stars; 81 percent play online games; 76 percent read online news; 75 percent send or receive instant messages. Yet that increasing use of technology doesn't appear to make them any more interested in studying the science behind the technology. Maybe that's not surprising -- the fact that most teenagers probably have access to and use cars doesn't appear to be swelling the ranks of automotive engineers. Maybe there's a perception among bright teenagers that computing is a "solved" problem -- or as John Marburger, the President's science advisor put it at a hearing before the House Science Committee early in his tenure, maybe it's a "mature" discipline now, perhaps not worthy of the priority placed on other more "breakthrough" areas of study like nanotechnology. I think Arora and Chazelle do a good job of debunking that perception, demonstrating that computing is thick with challenges and rich science "indispensible to the nation" to occupy bright minds for years to come. But the perception persists. Computing has an image problem. Fortunately, the computing community isn't standing still in trying to address it (though maybe it's only just stood up). At the Computing Leadership Summit convened by CRA last February, a large and diverse group of stakeholders -- including all the major computing societies, representatives from PITAC, NSF and the National Academies, and industry reps from Google, HP, IBM, Lucent, Microsoft, Sun, TechNet and others (complete list and summary here (pdf)) -- committed to addressing two key issues facing computing: the current concerns of research funding support and computing's "image" problem. Task forces have been formed, chairmen named (Edward Lazowska of U of Washington heads the research funding task force; Rick Rashid of Microsoft heads the "image" task force), and the work is underway. As the summary of the summit demonstrates, no ideas or possible avenues are off the table.... We'll report more on the effort as it moves forward. As Arora, Chazelle and Samuelson all point out, the challenges are tall, but the stakes for the country (never mind the discipline) are even higher. Posted by PeterHarsha at August 11, 2005 05:00 AM | TrackBackPosted to People | Policy | R&D in the Press |