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Abstract

Computers are good at “number crunching”, e.g., at simulating
the behaviors of complex systems described by sets of
differential equations and concretely specified initial
conditions. But can they help scientists with abstract reasoning?
Can computers reason?

If by “reason” we mean deduce abstract properties of systems
described symbolically, the answer is “yes”.



If we had some exact language ... or at least a kind of truly
philosophic writing, in which the ideas were reduced to a
kind of alphabet of human thought, then all that follows
rationally from what is given could be found by a kind of
calculus, just as arithmetical or geometrical problems are
solved.

— Leibniz (1646 - 1716)



Basic Notions
• syntax — specifying formulas

• axioms — formulas taken as given

• rules of inference — formula transformation rules

• theorems — formulas derived from axioms with rules of inference

• proofs — the derivations themselves

• semantics — determines which formulas are valid (“always true”)

• decidability — whether there is an algorithm for distinguishing
theorems from non-theorems.





If
• the axioms are valid and
• the rules of inference are validity preserving,
then 
theorems are valid.

Thus, if you want to know that something is always true, try 
writing  it as a symbolic formula and proving it.



Example Formal Systems
• propositional calculus
• propositional temporal logic
• predicate calculus
• higher-order logic
• set theory
• lambda calculus



Some systems are decidable, others not.

But because proofs are finite syntactic objects, it is possible
to create mechanized reasoning engines that explore the
space of formulas derivable from the axioms.

You may think of these engines as similar to chess playing
programs, exploring only the “plausible” legal moves.

A reasoning engine may be

• incomplete — incapable of finding proofs for all theorems,

but must be

• sound — correct when it says something is a theorem.



By mechanized reasoning engine I include equivalence
checkers, satisfiability solvers, model checkers, proof
checkers, and interactive theorem provers.

There are a large number of mechanized reasoning engines,
including Conformal, zChaff, SMV, Mizar, Nqthm, HOL,
ACL2, Maude, PVS, Coq.



Using a Reasoning Engine

• formalize a model of the problem (typically by
writing axioms  and defining relevant functions and
relations)

• formalize a conjecture
• submit the conjecture to the engine
• provide guidance

The first step is often the most important:  formalizing the
problem at an appropriate level of abstraction can often
make it tractable.



Applications in Computer Science

• equivalence checking  — checking that the gate level
design is propositionally equivalent to a higher-level
description (tautology checking)

• model checking  — checking that a given finite state
machine satisfies certain propositional properties along all
its (relevant) paths

• theorem proving  — verifying that hardware and
software have certain functional properties



Some Numbers

Tautology checking can be done in exponential time:  A
formula involving n propositional variables can be
exhaustively checked in     cases.

Modern symbolic tautology checkers routinely check
formulas involving tens of thousands of variables.

n
2



But Is Mechanized Aid Really
Necessary?

“An elusive circuitry error is causing a chip used in
millions of computers to generate inaccurate results” -- NY
Times, “Circuit Flaw Causes Pentium Chip to Miscalculate, Intel
Admits”, Nov 11, 1994

“Intel Corp. last week took a $475 million write-off to
cover costs associated with the divide bug in the Pentium
microprocessor's floating-point unit” --- EE Times, Jan 23,
1995



To exhaustively test a 64-bit floating-point divider would
take about             years on a petaflop machine
(       operations per second).

By July, 1995, the microcode for the AMD K5 floating
point divide operation had been proved correct using the
ACL2 reasoning engine.

A total of 9 weeks were devoted to the project.

All                      cases were handled.
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The AMD Athlon FMUL Theorem

(defthm correctness-of-fmul
    (let ((ideal (rnd (* (hat x) (hat y))
                           (mode rc)
                           (precision pc)))
           (z (fmul x y rc pc)))
      (implies (and (normal-encoding-p x (extfmt))
                         (normal-encoding-p y (extfmt))
                         (member rc (list 0 1 2 3))
                         (member pc (list 0 1))
                         (repp ideal (extfmt)))
                  (and (normal-encoding-p z (extfmt))
                          (= (hat z) ideal)))))



An ACL2 proof that a Motorola digital signal
processor design implements a given instruction set
produced subgoals requiring 5000 pages each simply
to print.

The formal proof would consist of many millions of
primitive proof steps.



Use of symbolic reasoning engines is qualitatively different
from simulation and testing.

Users describe abstract ideas and properties in symbolic terms.

The engines respond in kind, communicating their discoveries
or problems in symbolic terms.

Symbolic proofs generally cover an infinity of cases.

Using one of these engines is like having a rather
unimaginative colleague at your blackboard who is never too
embarrassed to say “I don't understand”, who is never
distracted, and who can carry out symbolic processes with
blinding speed and total accuracy.



It is now routine at Intel, IBM, AMD, and other microprocessor
design companies to analyze certain components (floating point
units, instruction decoders, pipelines, memory protocols) with
mechanized reasoning engines.

These designs are simply too complex to be analyzed by unaided
humans.



Applications from Biochemistry

Researchers at SRI International have used the Maude
system to implement Pathway Logic.

Pathway Logic is a formal system designed to let
biochemists describe certain biological state machines.

Protein “states” are formalized as terms indicating the
presence or absence of certain features in the protein.

Biological processes are described by axioms that transform
protein states.



The researchers have used this system to model the Epidermal
Growth Factor Receptor (EGFR) network, including the Rafl
serine-threonine protein kinase.

They are developing two levels of abstraction, the more detailed
one differentiating states according to structural features of the
protein.



Using Maude's model checker it is possible to ask such
questions as ``Can Rafl in a cell described by graf be
activated?''

If so, Maude shows a path (sequence of transitions) to
the desired state.

If not, the model definitively prohibits Rafl activation.

It is up to the biochemist to determine whether these
predictions and thus the models conform to reality.



Applications from Mathematics

Gödel's First Incompleteness Theorem: In any consistent
formal theory providing basic arithmetic, it is possible to
construct a statement that is true but not provable in the theory.

This has often been used to argue that mechanistic reasoning is
somehow inferior to human reasoning.

But a machine has proved this theorem with guidance from its
human user.



The Four Color Theorem: The regions of any simple
planar map can be colored with only four colors so that no
two adjacent regions are the same color.



Conjectured 1852.

First “proved” by Appel and Haken in 1976; two
controversial aspects:

• manual proof consisting of 10,000combinations of
  conditions showing the sufficiency of solving a billion
  special cases

• custom written computer program to dispatch the billion
  cases.

The first step was later reduced to 2,500 combinations.



In 2004, Gonthier at Microsoft Research Lab, Cambridge
(England) and Werner at INRIA (France) used the INRIA Coq
mechanized reasoning engine to prove formally that

• the combinatoric analysis was correct, and

• a certain custom-written computer program correctly carried
  out the analysis of the billion cases.

Finally, after 150 years, the Four Color Theorem has been
formally proved and computational reasoning was key.



The Robbins Algebra Problem was open for 60 years.  It
concerned whether a certain set of axioms characterized all
Boolean Algebras.

The proof was found automatically by the EQP theorem
prover at Argonne National Labs in 1997.

That was the first instance of a computer program
automatically solving a well-studied open problem.



Conclusion

Mechanical reasoning engines are fundamentally expanding what
we can reason about.

Today's computers are faster and more reliable in part because
scientists and engineers have augmented their abilities to reason
about their designs.

Reasoning engines will redefine the colloquial meaning of proof,
just as computing has already redefined such words as model and
experiment.

We are approaching a time when fundamental discoveries will be
made jointly by humans collaborating and arguing with machines.
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