

PLANNING YOUR RESEARCH CAREER

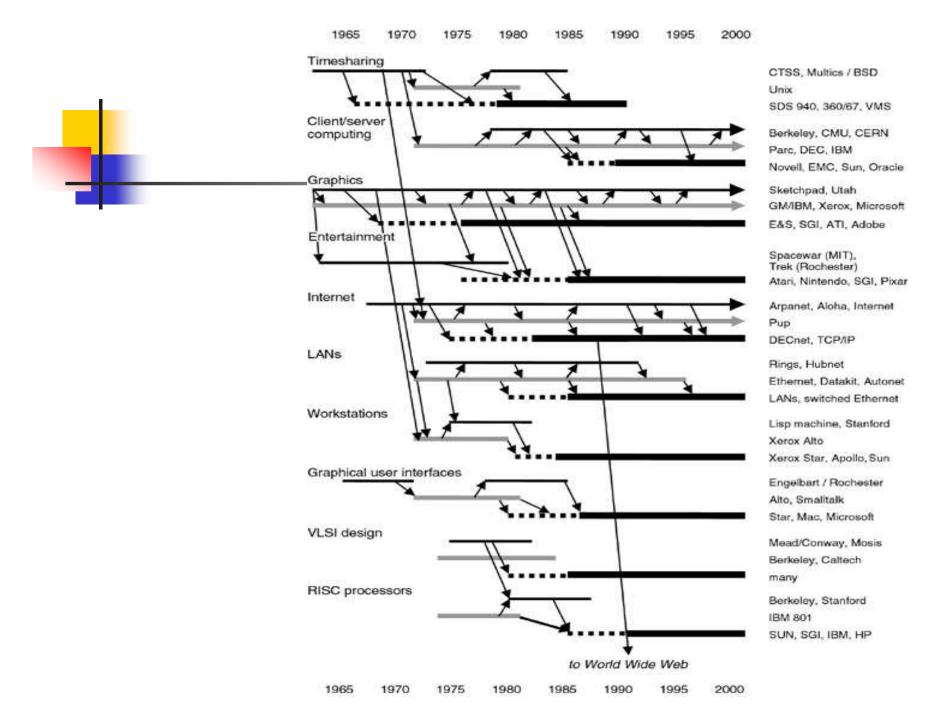
JURIS HARTMANIS CORNELL UNIVERSITY

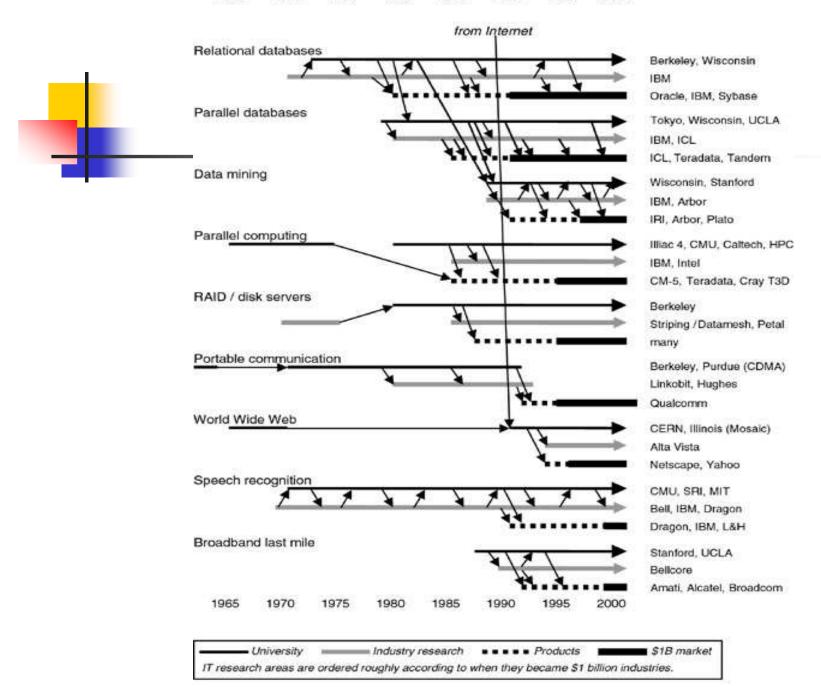
CONGRATULATIONS!

 CONGRATULATIONS ON CHOOSING A CAREER IN COMPUTER SCIENCE!

In about 50 years CS has grown in to a major science and has helped create the **Information Revolution**

 In about 50 years CS has grown in to a major science and has helped create the Information Revolution


 CS has made rich intellectual and practical contributions to computing and technology


NAF

- In about 50 years CS has grown in to a major science and has helped create the Information Revolution
- CS has made rich intellectual and practical contribution to computing and technology,
- Strong societal and cultural impact,

- In about 50 years CS has grown in to a major science and has helped create the Information Revolution
- CS has made rich intellectual and practical contribution to computing and technology
- Strong societal and cultural impact,
- Growing intellectual impact on other sciences

- In about 50 years CS has grown in to a major science and has helped create the Information Revolution
- CS has made rich intellectual and practical contribution to computing and technology
- Strong societal and cultural impact,
- Growing intellectual impact on other sciences,
- Important economic contributions,
- Tire Track slide

- CS is a new species among sciences
- Its research paradigms differ from the physical and biological sciences, yet we have a lot to learn from other sciences and contribute to them.

- CS is a new species among sciences
- Its research paradigms differ from the physical and biological sciences, yet we have a lot to learn from other sciences and contribute to them.
- CS is concerned with automating intellectual processes
- The Industrial Revolution automated mechanical processes using physical materials, the Information Revolution automates intellectual processes using digital information

TO SUCCEED YOU MUST LIKE SCIENCE

- Soak up as much CS knowledge as you can and know as much science as possible, know more math (statistics).
- This is a continuing process!
- Seek inspiration from results and successes in CS and other sciences

Quantum mechanics and quantum computing

 Frame your research problems in a broad CS framework with real relevance to theory or practice

- Frame your research problems in a broad CS framework with real relevance to theory or practice
- Look for what is not well understood, what do we want to know, what tools are needed?

- Frame your research problems in a broad CS framework with real relevance to theory or practice
- Look for what is not well understood, what do we want to know, what tools are needed?
- What are the barriers to computation, programming, etc. Where are the bottlenecks?

- Frame your research problems in a broad CS framework with real relevance to theory or practice
- Look for what is not well understood, what do we want to know, what tools are needed?
- What are the barriers to computation? programming, etc. Where are the bottlenecks?
- What are the implications of technology trends?

- Frame your research problems in a broad CS framework with real relevance to theory or practice
- Look for what is not well understood, what do we want to know?
- What are the barriers to computation? programming, etc. Where are the bottlenecks?
- What are the implications of technology trends?
- Aim for the first non-trivial result in a new area.

SCIENCE IS A PROCESS

- Science is a process, ever changing. So is research, thus there is a time line, a story to tell.
 Tell it, put it in temporal and intellectual context.
- Distill out the essence of the problem and solution and communicate in a broad CS framework.
- COMMUNICATE!

EXPOSITION

Summarize and unify results in your area of research. This will help YOU in research and problem selection and "selling" your research before and after it is done.

EXPOSITION

- Summarize and unify results in your area of research. This will help YOU in research and problem selection and "selling" your research before and after it is done.
- Write surveys
- Write books

EXPOSITION

- Summarize and unify results in your area of research. This will help YOU in research and problem selection and "selling" your research before and after it is done.
- Write surveys
- Write books
- We are in a citation contest, do not be enslaved by it but respect it.

RECOMMENDATIONS

 Select some 10+ experts in and near your area of research and make sure they know about your research.

They may have to write recommendations for you.

FOR INSPIRATION AND STIMULATION

 Keep up with developments in CS and your favorite science(s).

 Read biographies of scientists and history of science, CS an other sciences.

THE CREATIVE INTELLECTUAL PROCESS

Professor Dilworth, first I will do the Analysis exam....

THE CREATIVE INTELLECTUAL PROCESS

Professor Dilworth, first I will do the Analysis exam....

Allan Borodin ... (2008 CRM-Fields-PIMS Award....)

THE CREATIVE INTELLECTUAL PROCESS

- Professor Dilworth, first I will do the Analysis exam....
- Allan Borodin
- Jaques Hadamard, "The psychology of invention in the mathematical field"
- Preparation, Incubation, Illumination, Verification
- Hadamard: Prime number theorem, 1896

All THE BEST!!

- Good luck,
- Great results
- and generous citations!!