Infrastructure Proposal
Display Specifications
Red Team

Shivashankar Balu Ding Liu Ross Messing
Matt Post Arrvindh Shriraman

Last updated 10/22/2004 14:11

The display system will show key information about the current state of the
game. This document describes the content and format of the information that
the system requires, and when that information should be sent.

1 Display

The display will indicate each player’s current status (free, in jail, or removed
from the game). In addition, we may include other information, such as their in-
game performance. Team affiliation for each player will also be clearly indicated
by the display.

The display will indicate each team’s “last known” current score and the
number of objects in its possession. Any time the team’s executive learns this
information, it must send it to us in the format described below. We will
also include information about triggered alarms, including where they occurred,
who triggered them, and specifically whether a team member triggered his own
team’s alarm.

We will also display messages received from all executive machines and the
current turn, clock, and period.

The manner in which this information will be laid out on the screen will
be decided once we have more information about the infrastructure from the
other teams. We plan to implement a graphical display in Java or the C++ QT
library, which will present an intuitive and useful display.

2 Information requirements

The display system will include a multi-threaded server that sits on a TCP
socket and waits for remote connections. All information will be communicated
in short, descriptive messages over TCP/IP. These messages consist of a number
of colon-delimited fields, and are case-insensitive but whitespace-sensitive. The



Requirement Message Format
Clock TICK:(round):(period):{clock):(pause)
Player status STATUS: (player-name):(status-string)
Alarms triggered | ALARM:(area-name):(player-name)
Dialog messages | DIALOG:(team-name):(short-message)
Treasure count TREASURE: (team-name):(count)

first field indicates the type of message update, and the following fields are
determined by it. Also, strings should be sent in UTF format. In Java, this can
be done by calling the writeUTF() method on a DataOutputStream. Example
code follows in the appendix.

We need the following information from each team’s executive. Information
should be sent immediately when it changes. The basic ideas and some of the
formatting is borrowed from last year’s Red team’s specifications, although we
believe that it is presented here more clearly.

All messages are case-insensitive, except for (short-message), which is dis-
played as-is. All information should be sent immediately when it becomes avail-
able. This applies especially player status and treasure information.

2.1 Clock ticks

As described by the green team, the clock server sends its information every
second in the format described above. All of the arguments are integers. (round)
is the current round, (period) is the current period, where 0 means “red”, 1
“blue”, 2 “green”, and 3 “yellow”. (clock) is an integer conveying the number
of seconds remaining in the current period. (pause) is a 1 if the game has
been paused, and a 0 otherwise. When the game is paused, the “PAUSED” is
displayed for both the round and the clock.
This information is sent every second.

2.2 Player status

(player-name) corresponds to the names described in the Blue team’s gram-
mar. Possible values are “anustup”, “arrvindh”, “ben”, “piotr”, “mike”, “lior”,
“tanu”, “pin”, “ding”, “wenzhao”, “shiva”, “matt”, “jacob”, and “ross”. As
mentioned earlier, values are case-insensitive. (status-string) is one of “regis-
tered”, or “idle”.

2.3 Triggered alarms

Alarm messages should be sent from each team’s alarm system immediately
after an alarm is triggered. (area-name) and (player-name) follow the syntactic
conventions outline above. Note that there is an implicit synthesis requirement
here: the alarm system knows when an alarm is triggered, but does not know
who triggered it. Thus, in order to assemble this message, each team’s executive



will have to collect the information from the alarm system and then send the
alarm message.
The information must be sent as soon as it has been assembled.

2.4 Dialog messages

Dialog messages consist of all communication generated by any of your systems.
(team-name) is one of red, green, or blue. The message is an arbitrary natural
language string of no more than 40 characters (this constant may have to be
adjusted). For example, “matt will steal from the blue area” or “anustup will
self-destruct”. Note that the (short-message) field is the only piece of the update
strings that is case-sensitive.

Following the precedent of last year’s red team, we plan to listen on port
9990 for incoming messages. Note that this has changed from the previous value
of 4123 in order to fit with broadcast’s from the Green team’s time server.

2.5 Treasure information

We will also attempt to maintain information about each team’s current score
by requiring that updates be sent immediately when the information is known.
Whenever any executive asks the “RoomQuery” question from the Blue team’s
grammar, that executive, upon receiving a response, must immediately send it
to us in the format described above. (team-name), as before, is one of “red”,
“green”, or “blue”.

3 Database

In collaboration with the green team, we will be constructing a minimal (non-
relational) database for storing information across sessions, reboots, etc. All
information stored in and retrieved from the database is handled by our server,
so that no outside access is permitted except through our interface. This ensures
fairness and consistency, since the interface defines only a means of receiving
information, not sending it.

4 Acknowledgments

We are heavily indebted to the excellent work prepared by the 2003 Kleptomania

Red team, which consited of Madhur Ambastha, Jonathan Shor, Wei Jiang, and
Viendra Maratha. Their work can be found at http://www.cs.rochester.edu/u/nelson/
courses/csc_400/assignments/kleptomania/display_specs_2003.html .

Appendix — sample code

(You’ll have to insert the appropriate exception handling).



import java.io.*;
import java.net.*;

Socket sock = new Socket(displayServer, 9990);
DataOutputStream out = sock.getOutputStream();
out.writeUTF (update) ;



