Computer Science Challenges from Medicine

Peter Szolovits
MIT Computer Science and Artificial Intelligence Lab
Prof. of Electrical Engineering & Computer Science
Prof. of Health Sciences & Technology

CRA Snowbird
July 14, 2008

http://medg.csail.mit.edu/
US Health Care is Broken

- IOM: 48-98,000 “unnecessary” deaths/year
- 45M uninsured
 - Emergency Room as primary care
- Poor communication among providers
 - Repeat tests, incoherent care (no continuity), delays
- Spending ~17% of GDP, and growing
 - GM cars contain more health care than steel
 - BTW, education spending ~8-9% !!!
- Poor IT deployment and use
 - Most IT adoption for “low-hanging fruit”, e.g., billing
 - Low investment levels
 - Major systems tend to “melt down” (e.g., Kaiser, NHS)
NAS/NRC/CSTB Study
(in progress; comments mine, not committee’s!)

- Challenges in CS ∩ IT ∩ healthcare
 - Site-visit based study, led by Bill Stead (Vanderbilt)
- Fragmented data from heterogeneous systems
- Documentation of what has been done, not mediation of what is being done
- UI’s look like paper predecessors
- Very rare decision support/evidence based advice
- Unclear, *ad hoc*, complex processes
 - Not recorded, not analyzed
- Frequent interruptions
- Speed is paramount for users
Points of Leverage

- **Policy**
 - Insurance
 - Incentives

- **Technology**
 - Improved collection, handling & use of data
 - Communication and workflow
 - Decision Support
 - Privacy and Confidentiality

- **Transformational Opportunities**
 - Patient involvement & control
 - Research integrated with care
 - Healthcare as a system
Data: Examples of the Good

- **MIMIC II**: 30,000 ICU patients @ BIDMC
 - Signals (~4000), numerics, notes, labs, pharma, HIS

- **Harvard Crimson**
 - Save all blood samples, available for studies

- **Gene Expression Omnibus (GEO)**
 - All “raw” data from NIH-supported genomic experiments
 - Available for data re-use
Data: The Bad

- Poor interoperability
- How to fix?
 - Standards
 - HL7 CDA, CCR, ASN12, DICOM, LOINC, ICD, SNOMED…
 - Office of National Coordinator for Healthcare
 - AHIC, HITSP, CCHIT, HISPC, …
 - “Semantic Web”—loosely coupled declarative data
Data: The Opportunity

- Improved acquisition methods
 - *Intelligent Listening*—new modalities such as speech
 - *Aware examining room*—gestures, seeing & interpreting actions
 - *Walking ICU*—wearable real-time instrumentation
- Lifelong, patient-controlled records
 - E.g., indivohealth.org, MS HealthVault, Google Health
Decision Support

- Models of disease and of healthcare
 - “Expert systems”--rules or patterns
 - Statistical predictive models
 - Machine learning/data mining (neo-statistics)
 - Qualitative “causal” models
 - Differential equation models of pathophysiology
- Integration with workflow
 - E.g., CPOE
 - Built-in follow-up actions with each action
- Support patients, not just providers
Patient Control

- Who cares most about your health?
- Who is “on the spot” for all events & decisions?
- Who knows your preferences best?
- Who is willing to work without payment?

So, why not put you in charge of your continuity of care?
Desired Functionality
(from 1994 Guardian Angel proposal)

- **Patient-owned life-long individual record**: all medical conditions, care, preferences, ...; allows individual to collect data on own medically-relevant experiences
- **Personal interface** to health-care information systems: hospital, lab, clinic, billing, ...
- **Individualized medical encyclopedia**: explains results and plans to patient
- **Communication interface** with care team
- Permit unobtrusive **continuous monitoring** of relevant health-related activities and conditions
- **Decision support** for the patient and caretakers
Integrating Research with Care

Biomedicine
Clinical Care Processes

Diagram from David Margulies
I2b2: Integrating Information from Bench to Bedside

- Phenotype = Genotype + Environment
- We’re getting very good at measuring G
- P is represented by clinical history
- E.g., Scott Weiss’ asthma study
 - Use Partners Health Care RPDR (Research Patient Data Repository) to select especially poorly-responding asthma patients
 - Collect genomic data
 - Find predictive relationships
Privacy and Confidentiality

- Improving trust
 - Transparency
 - Patient control of access and dissemination
- Cryptographic framework using digital signatures
 - Allows separation of possession from authenticity
 - Practical problem: authenticating patients, providers
- Separating individuality from identity
- De-identification
 - Tabular data: k-anonymity, geographic fuzz
 - Text: NLP models for finding PHI