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How to detect epidemics
and influential blogs?




Networks: Rich data

Facebook (64 million users, billion dollar business)
MySpace (300 million users)

Instant Messenger (~1 billion users)

Blogging (250 million blogs world-wide, presidential
candidates run blogs)

World of Warcraft (internal economy 1 billion USD)
Second Life (GDP of 700 million USD in ‘07)



Networks: Rich and massive data
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World wide web Internet (AS) Social networks

We need for the

240M people, 255B messages, 4.5 TB data

60M posts, 120M links



Diffusion and Cascades

News, opinions, rumors
Word-of-mouth in marketing

Infectious diseases
As activations spread through the network
they leave a — a cascade

Cascade
Network (propagation graph)



Talk outline

On the Web we can actually and
a number of cascades

How do information and influence spread?

Effective and efficient algorithms
Saving lives



[w/ Adamic-Huberman, EC '06]

Setting 1: Viral marketing

People send and receive product
recommendations, purchase products
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4 million people,
16 million recommendations, 500k products



[w/ Glance-Hurst et al., SDM ‘o07]

Setting 2: Blogosphere

Bloggers write posts and refer (link) to other
posts and the

10.5 million posts, 16 million links



[w/ Kleinberg-Singh, PAKDD ‘06]

What do cascades look like?

Are they stars? Chains? Trees?

< (blogosphere):
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(ordered by frequency)

cascades are more social:
(no summarizers)



Human adoption curves

Prob. of adoption depends on the number of friends
who have adopted

Distinction has consequences for models and algorithms

Prob. of adoption
Prob. of adoption

k = number of friends adopting k = number of friends adopting

' To find the answer we need lots of data IS



[w/ Adamic-Huberman, EC '06]

Adoption curve: Validation
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Later similar findings were made for group membership
, and probability of communication 10



Cascade & outbreak detection

Which are the influential/infectious blogs?

Who are the trendsetters? ?& ==
Influential people? £ ¢

'''''

Where to place monitoring stations to detect
epidemics?
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[w/ Krause-Guestrin et al., KDD ‘o07]
(best student paper)

The problem: Detecting cascades




[w/ Krause-Guestrin et al., KDD ‘o07]

(best student paper)

Two parts to the problem

Cost:

Cost of monitoring is blog
dependent (big blogs cost more
time to read)

Minimize the number of people
that that know the story before
we do
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[w/ Krause-Guestrin et al., KDD ‘o07]
(best student paper)

The solution: Covering blogs

Given a budget
Select blogs to cover the most of the
blogosphere?

Solving this

exactly is

Theorem: |
Our algorithm CELF can
doitin and with




[w/ Krause-Guestrin et al., KDD ‘o07]

(best student paper)

Problem structure: Submodularity

New monitored

=W
SO
I Adding B"helps a lot Adfi/ienrg ﬁ;t};:Ips
AN ” \yﬁﬁy
Placement A={B_, B,} Placement B={B,, B,, B,, B,}
Gain of adding a node to IS

gain of adding a node to
diminishing returns, think of it
as “concavity”)



Back to the Question...




A single story propagates...

Obscure
technology

story



Blogs: Information epidemics

CELF
“Covered” 1 (usedby
blogOSphere ln ||nkS Technorati)
(higher is Out-links
better) # posts

— Random
0 20 40 60 80 100
Number of monitored blogs

For more info see our website: .8



CELF: Scalability

400 | | |
Exhaustive Greedy
3001 search
Run time
(seconds)
(loweris | 2001 N
better)
100 - N

o—o—o oo CELF
2 4 6 8 10
Number of monitored blogs
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So, who is influential? PT———

What should | read?

1 0.13 | http://instapundit.com 4593 4636 5255
2 0.18 | http://donsurber.blogspot.com 1534 = 1206 3495
3 0.22 | http://sciencepolitics.blogspot.com 924 576 2701
4 0.26 | http://www.watcherofweasels.com 261 941 3630
5 0.29 | http://michellemalkin.com 1839 12642 6323
6 0.32 | http://blogometer.nationaljournal.com 189 2313 9272
7 0.34 | http://themodulator.org 475 717 L9LL
8 0.35 | http://www.bloggersblog.com 895 247 10201
9 0.37 | http://www.boingboing.net 5776 6337 6183
10 0.38 | http://atrios.blogspot.com 4682 3205 3102
11 0.39 | http://lawhawk.blogspot.com 1862 463 6597
12 0.40 http://www.gothamist.com 6223 3324 17172
13 0.41 | http://mparentz777.livejournal.com 25925 199 47933
14 0.42 | http://wheelgun.blogspot.com 1174 128 939
15 0.43  http://gevkaffeegal.typepad.com/the_alliance 302 428 2481



http://instapundit.com/
http://donsurber.blogspot.com/
http://sciencepolitics.blogspot.com/
http://www.watcherofweasels.com/
http://michellemalkin.com/
http://blogometer.nationaljournal.com/
http://themodulator.org/
http://www.bloggersblog.com/
http://www.boingboing.net/
http://atrios.blogspot.com/
http://lawhawk.blogspot.com/
http://www.gothamist.com/
http://mparent7777.livejournal.com/
http://wheelgun.blogspot.com/
http://gevkaffeegal.typepad.com/the_alliance

[w/ Krause et al., J. of Water Resource Planning]

Same problem: Water Network

a real city water
distribution network

data on how
contaminants spread
over time Wi

Problem posed by the US
Environmental Protection
Agency
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[w/ Ostfeld et al., J. of Water Resource Planning]

Water network: Results

0.8 CELF Author Score
CMU (CELF) 26
0.6 7| Degree Sandia 21
Population Random U Exter 20
saved 0.4 {Population Bentley systems 19

(higheris :

better) Technion (1) 14
Flow Bordeaux 12
U Cyprus 11
0 é 1‘0 1|5 20 U Guelph ’
Number of placed sensors U Michigan 4
Michigan Tech U 3
Our approach performed Malcolm 2
at the Proteo 2
competition fechnon @@ :
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Conclusion and connections

Obscure
Wired Nev:g Slashdot
Scientist
CNN New York
Times
BBC
New ranking and measures for blogs

Recommendations and incentives
Diffusion of topics (news, media)
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