Computer Science “Topic Explosion”

- A very broad spectrum, with new topics pressuring existing curricula every day
 - bioinformatics
 - medical informatics
 - cyber-security & privacy
 - crisis response
 - ubiquitous computing
 - game culture & technology
 - K-12 education
 - …
A Spectrum of Concerns

Different fundamentals, techniques, approaches, principles, and practices underlie different parts of this spectrum.

- People, Organizations
- Circuits, Devices
Bren School B.S. Degree Programs

People, Organizations

Informatics (est. 2004) — software emphasis

Computer Science (est. 2003) — theory emphasis

Computer Science and Engineering (joint with School of Engineering; est. 2003) — hardware emphasis

Information and Computer Science (est. 1968) — make your own

Circuits, Devices
Informatics

People, Organizations

Informatics (est. 2004) — software emphasis

Computer Science (est. 2003) — theory emphasis

Computer Science and Engineering (joint with School of Engineering; est. 2003) — hardware emphasis

Information and Computer Science (est. 1968) — make your own

Circuits, Devices
Informatics: What Do We Mean?

- Interdisciplinary study of the design, application, use and impact of information technology
 - software and information
 - development and design
 - technical and social
 - creation and analysis/understanding

- Broadly speaking: computing and people

- Key characterization: a design discipline focusing on the relationship between information technology design and use in social and organizational settings
Informatics Pedagogical Philosophy

- Studio-style design courses
- Multi-course sequences
- Balance theory and practice
- Apply spiral approach of “just in time learning”
- End-of-year projects and year-long senior project
- Be excellent designers, but know how to build too
- Group work from the start
- Encourage creativity and reflection

- Designed from the ground up as an integrated four-year curriculum
Course Comparison (Part 1)

<table>
<thead>
<tr>
<th>Course</th>
<th>INF</th>
<th>CS</th>
<th>CSE</th>
<th>ICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intro programming/data structures</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Algorithms/theory</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Digital signal processing</td>
<td></td>
<td></td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Circuit analysis/chip design</td>
<td></td>
<td></td>
<td></td>
<td>•</td>
</tr>
<tr>
<td>Digital logic</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Computer architecture</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Networking</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Compilers/operating systems</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Graphics</td>
<td></td>
<td></td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Artificial intelligence</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Programming languages</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
</tbody>
</table>
Course Comparison (Part 2)

<table>
<thead>
<tr>
<th></th>
<th>INF</th>
<th>CS</th>
<th>CSE</th>
<th>ICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programming languages</td>
<td>••</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Information and database mgmt</td>
<td>•••</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software engineering</td>
<td>•••</td>
<td>•</td>
<td>•</td>
<td>••</td>
</tr>
<tr>
<td>Software design</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human-computer interaction</td>
<td>••</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social/organizational impact</td>
<td>•••</td>
<td></td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Project management/collb</td>
<td>••</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design/project</td>
<td>•••</td>
<td>••</td>
<td>••</td>
<td>••</td>
</tr>
<tr>
<td>Additional tech/CS required</td>
<td>•••</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Mathematics</td>
<td>•••</td>
<td>•••</td>
<td>•••</td>
<td>•••</td>
</tr>
<tr>
<td>Natural sciences</td>
<td>•••</td>
<td>••</td>
<td>••</td>
<td>•</td>
</tr>
</tbody>
</table>
Student Numbers

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring 2005</td>
<td>10</td>
<td>17</td>
<td>1</td>
<td>0</td>
<td>28</td>
</tr>
<tr>
<td>Spring 2006</td>
<td>9</td>
<td>20</td>
<td>19</td>
<td>2</td>
<td>50</td>
</tr>
<tr>
<td>Spring 2007</td>
<td>10</td>
<td>20</td>
<td>24</td>
<td>23</td>
<td>77</td>
</tr>
<tr>
<td>Spring 2008</td>
<td>6</td>
<td>21</td>
<td>31</td>
<td>57</td>
<td>115</td>
</tr>
</tbody>
</table>
Difficult Experiences

- The name “Informatics”
 - lots of recruitment materials
 - Informatics Q&A on web site
 - outreach efforts
 - repeated exposure
 - parents

- Choosing the right major is difficult for freshmen
 - allow seamless transfer among majors until the end of the first year, despite different courses
 - http://www.ics.uci.edu/ugrad/degrees/advisor

- Balancing the programmers versus the non-programmers
- Inflexibility of the program due to many new courses
- Initial high percentage of female students has dropped
- Skepticism in industry (but…)

July 17, 2008 – 19:16:04
Positive Experiences

- Informatics students have been superb
- Breadth of interests and background among the Informatics students
 - programmers versus non-programmers
- First class of 12 students graduated this Spring
 - very positive feedback on final survey
 - representative of breadth of the program
 - strong career paths
- Industry has begun to recognize and support the program
 - “reverse recruitment visits”
 - project classes
- Faculty are very engaged with the program
- FIPSE and NSF support
Thank you

http://www.ics.uci.edu/informatics/ugrad
Future

- The experiment continues
 - larger sustainable base of students is needed
- Name change of and/or tracks in the program
 - very divided opinions among the faculty
- Monitor the students after graduation
- High-school outreach
- Community colleges
The Informatics Focus
Informatics
Resulting Skills

- Able to design and coordinate implementation of software and information systems
 - not hackers, not just tool users or coders
 - instead, professionals who
 - write software but also do much more
 - design with expertise
 - listen to programmers and other people involved
 - interact with customers
 - analyze, compare, and discuss the quality of alternative designs
 - devise the best implementation techniques in every situation
 - understand the role of quality control
 - adapt to changing requirements

- Able to adapt to new concepts and technologies

- Able to act as agents of change
Areas of Study

- Software engineering
- Human-computer interaction
- Project management
- Programming languages
- Databases
- Computer-supported collaborative work
- IT organizations
- User modeling
- Information retrieval, management, and visualization
- Ethics, privacy & security
- Computation-social relationships
- And others at the periphery
 - business, management, organizational computing, social science, cognitive science, anthropology, digital arts, game technology, medical informatics, and so on
Computer Science “Topic Explosion”
Curriculum

<table>
<thead>
<tr>
<th>Fall Year 1</th>
<th>Winter Year 1</th>
<th>Spring Year 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informatics Core</td>
<td>Informatics Core</td>
<td>Informatics Core</td>
</tr>
<tr>
<td>Writing</td>
<td>Writing</td>
<td>Writing</td>
</tr>
<tr>
<td>Critical Reasoning</td>
<td>Discrete Mathematics</td>
<td>Fundamental data structures</td>
</tr>
<tr>
<td>Fall Year 2</td>
<td>Winter Year 2</td>
<td>Spring Year 2</td>
</tr>
<tr>
<td>Statistics</td>
<td>Human-Computer Interaction</td>
<td>Project in HCI and User Interfaces</td>
</tr>
<tr>
<td>Breadth</td>
<td>Breadth</td>
<td>Breadth</td>
</tr>
<tr>
<td>Fall Year 3</td>
<td>Winter Year 3</td>
<td>Spring Year 3</td>
</tr>
<tr>
<td>Social Analysis of Computerization</td>
<td>Organizational Information Systems</td>
<td>Proj in Social & Org Impacts of Comp</td>
</tr>
<tr>
<td>Software Design I</td>
<td>Software Design II</td>
<td>SW Arch, Dist Syst, & Interoperability</td>
</tr>
<tr>
<td>Proj. in File and Database Mgmt</td>
<td>Breadth / Elective</td>
<td>Project Management</td>
</tr>
<tr>
<td>Breadth / Elective</td>
<td>Breadth / Elective</td>
<td>Breadth / Elective</td>
</tr>
<tr>
<td>Fall Year 4</td>
<td>Winter Year 4</td>
<td>Spring Year 4</td>
</tr>
<tr>
<td>Senior Design Project</td>
<td>Senior Design Project</td>
<td>Senior Design Project</td>
</tr>
<tr>
<td>Computer-Supported Coop Work</td>
<td>Information Retrieval</td>
<td>Information Visualization</td>
</tr>
<tr>
<td>Breadth</td>
<td>Breadth</td>
<td>Breadth / Elective</td>
</tr>
<tr>
<td>Breadth / Elective</td>
<td>Breadth / Elective</td>
<td>Breadth / Elective</td>
</tr>
</tbody>
</table>
Who Should Be Interested?

- We expect a broad variety of students with a diverse range of backgrounds
- The degree program moves away from the popular belief that computer scientists are "mad hackers", and instead welcomes students
 - who may not know how to program
 - who have an interest in creative design
 - who generally are curious about designing proper solutions, not just programs
 - who are ready to work with others in a team to solve problems
- Basic skills necessary
 - listening, reading and writing
 - independent, critical, and free thinking
 - a desire for innovation and creativity
 - willingness to work on precise technical problems
Potential Careers

- Software Engineer
- Human-Computer Interface Designer
- Information Architect
- Mobile Computing Systems Designer
- Game Designer
- Systems Analyst
- Management Consultant
- Usability Engineer
- Web Developer
- Database Designer/Manager
- …