Expectations on and of our graduates

Eric Grimson
Massachusetts Institute of Technology
Hypothesis: Expectations on our graduates is changing

• What is our product?
 – Our students
 – We do many other things -- new knowledge, new methods, new ideas, new devices and artifacts ...
 – … but our multiplier is our students
 • They are the fuel for the innovation engine

• What are characteristics of a good product?
 – A function of the market -- where is the demand for our students?
Who hires our PhD students (by percentage)?

- Percentage of PhD’s by sector
 - Note surge in academic positions, 2002-2004
 - Otherwise industry has been major employer for last 15 years

Source: CRA Taulbee, year of graduation
Who hires our PhD students (by numbers)?

- Total output steady 94-99, slow decline to 02, then upturn, accelerating around 05
 - Note that by 07, industry hires outnumber academic hires at PhD schools 2:1

Source: CRA Taulbee, year of graduation
Who hires our PhD students (by numbers)?

- If we separate post-docs from faculty positions, trend is more dramatic
 - Ratio of industry to tenure track faculty positions is then greater than 3:1
 - Note major growth in industry hires since 04

Conclusion: Industry is the major employer of our doctoral students

PhD production

Conclusion: Industry is the major employer of our doctoral students
Where are the jobs in general?

- Broadening to include BS as well as PhD positions
 - Significant growth over past 20 years
 - Major growth predicted for CS over next 10 years (3X all jobs)

Conclusion: Industry will continue to be the major employer of our undergraduate and doctoral students.
Industry needs our students, but do our students need industry?

- Harder to find data
 - NRC data on MIT PhD Grads for past 5 years
 - Most students head to traditional industry sectors
 - List of major employers are what you would expect -- Google, Microsoft, IBM, Sun, Intel, Analog Devices, TI
Industry needs our students, but do our students need industry?

- Where do our undergraduates go?
 - NSF data too generic
 - Example: Sampling of MIT data
 - Larger percentage of undergraduates take non-EECS jobs than do grad students
 - Other is primarily finance, consulting

Conclusion: Range of industrial positions is broader than traditional CS industry of 20 years ago
So what does industry need?

- **Transferable skills**
 - Communications
 - oral and written
 - Analytic problem solving
 - Ability to work in a team
 - Leadership
 - Use of abstraction and modularity
 - Best practices
 - Documentation
 - Testing
What do our students think they need?

• Alumni survey from MIT
 – Surveyed in 2005
 – Rated importance of skills in their career since graduation
 – Note where “in depth knowledge” and “quantitative” fall
How much do we contribute to our students growth?

- Alumni survey from MIT
 - Surveyed in 2005
 - Rated how well education experience contributed to growth in skills
 - Have worked on communication with new requirements
 - Teamwork issues still need attention
So what else does industry need?

- Technical skills
 - Operating systems
 - Security
 - Search/learning
 - Database systems
 - Interactive digital media
 - Human-Computer interfaces
 - Informatics
 - Social computing
 - Computational life sciences

Conclusion: There is a wide range of industrial needs and a wide range of required skills -- too much to expect of any single student.
Hypothesis: Not possible, or even preferable, to teach “everything”

- Too much material to stuff into a four year curriculum
 - A lot is expected in knowledge and experience even in traditional areas
 - Problem is exacerbated when you factor in need to include experience in related fields depending on area of application or interest
 - Computational biology
 - Social networks
 - Environment and energy issues
 - Interactive media
 - Finance

Conclusion: We may need to consider new models of curricular delivery
Some possible options for handling explosion of knowledge

• Move to a professional degree
 – MEng as first professional degree

• Maintain current curricular structure
 – But change examples and scenarios for different student groups

• Change curricular structure
 – Allow student choice
 – Tradeoff of some areas with ancillary areas
Move to a professional degree

• 5 Year MEng program
 – Greater breadth and depth
 – Capstone experience in large scale project
 – Additional cost burden
 – Not the right path for every student, so need 4 year “bailout”
Preserve the current curriculum

• Keep the core subdisciplines in curriculum
 – Allow variations in each subarea specialized to student interest
 • Algorithms based on biological examples, or on information management, or …
 • Machine learning applied to biology, or to information management, or …
 • Distributed systems for environmental sensing, for information management, for …
Move to different degrees

• Acknowledge that not every student can or wants to know everything
 – Single degree option
 • Provide set of choices of major subareas
 • Allow students some choice
 – Multiple degree option
 • Create specific degrees for different areas
 – Computer science
 – Computational science and engineering
 – Information science
An example: MIT

- 2 introductory courses
- Select 4 of 7 foundation courses
 - 3 specific for CS, 3 specific for EE, 4 of 7 for EECS
- Select 3 header courses, followed by 2 advanced courses
 - Depth structure enforced
 - Choices largely based on idea of streams
 - Software engineering, security, information sciences, HCI, learning, systems, networks, …

- Exploring idea of new degrees
 - Computational biology
 - Replace one of 3 streams in CS degree with a biology stream
 - Information sciences
 - Replace one of 3 streams in CS degree with information management stream
An example: Cornell

• **Computer Science Degree**
 – Balances traditional curriculum (8 course core) in languages, systems, data structures, algorithms, theory, scientific computing together with set of electives and specializations
 – Specialization (3 course sequence) in one of 24 fields covering broad range of areas, many outside of traditional CS
 – Minor in Games, double majors with other fields as variations

• **Information Sciences Degree**
 – Select a primary and secondary track from following three options
 • Information systems
 – CS, OR
 • Human Computer Interaction
 – Communication, Psychology, Cognitive Studies
 • Social Studies of Computing
 – Science & Technology, Law, Economics, others
An example: Georgia Tech

- Threads™ (specific paths through curriculum)
 - Modeling & simulation
 - Devices
 - Theory
 - Information Internetworks
 - Intelligence
 - Media
 - People
 - Platforms

- Roles (fine tuning of threads based on desired goals of student)
 - Master practitioner
 - Entrepreneur
 - Innovator
 - Communicator
 - Policy maker

- Additional degree programs in Interactive Computing and in Computational Science and Engineering
What about the expectations of our students?

- Current students have much broader interests than their predecessors
 - Games and other interactive media
 - Social computing
 - Life science applications
 - Information sciences
- They may not be interested in or need all of the traditional areas of CS
- We need to adapt to those needs
- We may also benefit by an increased interest in the field and an increasingly diversified student body

Suggestion: We should pay attention to changing interests and needs of our students
Adding elements to existing curricula to meet emerging needs

- As industry changes, do the requirements on curriculum need to change to meet those needs?
 - Multi-core
 - Cloud computing
 - User interfaces for mobile devices
 - Low power devices, low power computation
Challenges to academia

- Balance teaching fundamentals with needs of specific fields
- Balance teaching foundations of field with changing interests of students
- Ensure that CS is more than a service to related fields
 - Contribute to modes of thought of other fields -- biology, medicine, social sciences, interactive media

Conclusion: Our students are changing and the requirements on our students are changing. We need to adapt to meet these changes.