
Undergraduate Curriculum and Accreditation Advances

Computing Curricula 2001

Eric Roberts, Stanford University

Snowbird 2002
July 15, 2002

Charter:

Final version of CS report released on December 15, 2001

http://www.computer.org/education/cc2001/
http://www.acm.org/sigcse/cc2001/

To review the Joint ACM and IEEE/CS Computing
Curricula 1991 and develop a revised and enhanced
version for the year 2001 that will match the latest
developments of computing technologies in the past
decade and endure through the next decade.

Computing Curricula 2001
(CC2001)

CC2001 Task Force

ACM IEEE Computer Society
Education Board chair: VP for Education:

Peter Denning Carl Chang
Task Force co-chairs: Task Force co-chairs:

Eric Roberts (editor) James Cross
Russ Shackelford Gerald Engel (editor)

Steering committee members: Steering committee members:
Richard Austing Doris Carver
Fay Cover Richard Eckhouse
Gordon Davies Willis King
Andrew McGettrick Francis Lau
Michael Schneider Susan Mengel
Ursula Wolz Robert Sloan (secretary)

Pradip Srimani

CC2001 Volumes

Computing Curricula 2001

Computer Science

The Joint Task Force
on Computing Curricula

IEEE Computer Society

Association for Computing Machinery

Computing Curricula 2001

Computer Engineering

The Joint Task Force
on Computing Curricula

IEEE Computer Society

Association for Computing Machinery

Computing Curricula 2001

Software Engineering

The Joint Task Force on
Software Engineering Education

Project
(SWEEP)

Computing Curricula 2001

Information Systems

Association for Computing Machinery
IEEE Computer Society

Association for Information Systems

Computing Curricula 2001

Two-Year Colleges

The Joint Task Force
on Computing Curricula

IEEE Computer Society

Association for Computing Machinery

Computing Curricula 2001

Overview

The Joint Task Force
on Computing Curricula

IEEE Computer Society

Association for Computing Machinery

History of Curriculum Reports

1967 COSINE report (Commission on Engineering Education)

1968 Curriculum ’68 (ACM)

1977 A Curriculum in CS and Engineering (IEEE-CS)

1978 Curriculum ’78 (ACM)

1983 Model Program in CS and Engineering (IEEE-CS)

1989 Computing as a Discipline

1991 Computing Curricula ’91 (IEEE-CS + ACM)

2001 Computing Curricula 2001 (IEEE-CS + ACM)

• The curriculum gave institutions too little guidance.
• Knowledge units are often not as useful as courses.
• The set of common requirements was too large.
• The structure made it difficult to incorporate new areas

into the curriculum.
• The curriculum emphasized specific pedagogical

approaches for which there had been inadequate testing
and development.

• The process did not provide sufficient opportunity for
external review.

Problems with Earlier Curricular Efforts

• Established a strong partnership between ACM and IEEE-CS
• Completed a survey and evaluation of the impact of CC’91
• Articulated a set of principles to guide our work
• Created a structure (KFGs and PFGs) for broad participation
• Secured funding from NSF to support a review meeting
• The process did not provide opportunity for external review.
• Developed a body of knowledge (BOK) for undergraduate CS
• Defined a set of core topics for all CS undergraduates
• Outlined learning objectives for each unit in the BOK
• Specified a list of over 80 courses for undergraduate CS
• Identified desired characteristics for CS graduates
• Implemented web resources to complement written report
• Integrated feedback from conference sessions into the report
• Published three public drafts on the way to the final report

CC2001 Accomplishments

CC2001 Principles
Computing is a broad field that extends well beyond the
boundaries of computer science.

1.

Computer science draws its foundations from a wide
variety of disciplines.

2.

The rapid evolution of computer science requires an
ongoing review of the corresponding curriculum.

3.

Development of a computer science curriculum must be
sensitive to changes in technology, new developments in
pedagogy, and the importance of lifelong learning.

4.

CC2001 must go beyond knowledge units to offer
significant guidance in terms of individual course design.

5.

CC2001 Principles
CC2001 should seek to identify the fundamental skills and
knowledge that all computing students must possess.

6.

The required body of knowledge must be made as small as
possible.

7.

CC2001 must strive to be international in scope.8.

The development of CC2001 must be broadly based.9.

CC2001 must include professional practice as an integral
component of the undergraduate curriculum.

10.

CC2001 must include discussions of strategies and tactics
for implementation along with high-level recommendations.

11.

CC2001: Sample Knowledge Unit

Topics:

Explain with examples the basic terminology of functions, relations, and sets.1.
Perform the operations associated with sets, functions, and relations.2.
Relate practical examples to the appropriate set, function, or relation model,
and interpret the associated operations and terminology in context.

3.

Demonstrate basic counting principles, including uses of diagonalization and the
pigeonhole principle.

4.

Functions (surjections, injections, inverses, composition)
Relations (reflexivity, symmetry, transitivity, equivalence relations)
Sets (Venn diagrams, complements, Cartesian products, power sets)
Pigeonhole principle
Cardinality and countability

Minimum core coverage time: 6 hours
DS1. Functions, relations, and sets [core]

• The core is not a complete curriculum.
– All undergraduate programs must include additional material

• Core units are not intended to be taught in a set of core
courses early in the undergraduate curriculum.
– Some core material will come in the junior or senior year
– Introductory courses will often include elective topics

• Hours indicate “lecture” hours, not credit hours.
– Hour estimates do not include preparation or study time

• Hours listed for units indicate the minimum time.
– You can always include more

• Hours are not as important as learning objectives.

Points to Remember about the Core

The Undergraduate CS Core
DS. Discrete Structures 43 core hours
PF. Programming Fundamentals 38 core hours
AL. Algorithms and Complexity 31 core hours
PL. Programming Languages 21 core hours
AR. Architecture and Organization 36 core hours
OS. Operating Systems 18 core hours
NC. Net-Centric Computing 15 core hours
HC. Human-Computer Interaction 8 core hours
GR. Graphics and Visualization 3 core hours
IS. Intelligent Systems 10 core hours
IM. Information Management 10 core hours
SE. Software Engineering 31 core hours
SP. Social and Professional Issues 16 core hours
Total 280 core hours

Structure of the Curriculum

Introductory
courses

Intermediate
courses

Advanced
courses

first
Imperative

first
Objects

first
Functional

first
Breadth

first
Algorithms

first
Hardware

approach
Topic-based

approach
Compressed

approach
Systems-based

approach
Web-based

Additional courses used to complete the undergraduate program

approaches
Hybrid

Two- and Three-Semester Intro Tracks

CS101I

Introduction to
Programming

CS102I

Object-Oriented
Programming

CS103I

Data Structures and
Algorithms

CS111I

Programming
Fundamentals

CS112I

Objects and Data
Abstraction

Structures for the Breadth-First Model

CS100B

Preview of
Computer Science

CS111x

Any two-semester
introductory sequence

CS112x

Second semester of
introductory sequence

CS101B

Introduction to
Computer Science

CS102B
Algorithms and
Programming

Techniques

CS103B

Principles of
Object-Oriented Design

Sample University Curriculum (US)

CS101I. Programming Fundamentals
Calculus I

CS102I. The Object-Oriented Paradigm
CS115. Discrete Structures for Computer Science
Calculus II

CS103I. Data Structures and Algorithms
Science course I

CS120. Introduction to Computer Organization
Science course II
Probability and Statistics

CS210T. Algorithm Design and Analysis
CS220T. Computer Architecture
Advanced mathematics elective

CS225T. Operating Systems
CS280T. Social and Professional Issues
CS elective
Undergraduate research project

CS230T. Net-centric Computing
CS262T. Information and Knowledge Management
CS290T. Software Development
Undergraduate research project

CS490. Capstone Project
CS elective
CS elective

Sample Small College Curriculum (US)

CS111O. Object-Oriented Programming
CS105. Discrete Structures I

CS112O. Object-Oriented Design and Methodology
CS106. Discrete Structures II

CS210C. Algorithm Design and Analysis
CS220C. Computer Architecture

CS226C. Operating Systems and Networking
Mathematics elective

CS262C. Information and Knowledge Management
CS elective

CS292C. Software Development and Prof. Practice
CS elective

CS elective CS490. Capstone Project

Sample Discipline-Based Curriculum
(Three-Year UK Model)

CS101O. Intro to Object-Oriented Programming
CS105. Discrete Structures I
CS120. Introduction to Computer Organization

CS102O. Objects and Data Abstraction
CS106. Discrete Structures II
Probability and statistics

CS103O. Algorithms and Data Structures
CS210S. Algorithm Design and Analysis
CS220S. Computer Architecture
CS271S. Information Management

CS226S. Operating Systems and Networking
CS240S. Programming Language Translation
CS255S. Computer Graphics
CS291S. Software Dev. and Systems Programming

CS260S. Artificial Intelligence
CS380. Professional Practice
CS elective
CS491. Capstone Project I

CS326. Concurrent and Distributed Systems
CS393. Software Engineering and Formal Spec.
CS elective
CS492. Capstone Project II

Sample Course Description

• Introduction to logic and proofs: Direct proofs; proof by contradiction;
mathematical induction

• Fundamental structures: Functions (surjections, injections, inverses,
composition); relations (reflexivity, symmetry, transitivity, equivalence
relations); sets (Venn diagrams, complements, Cartesian products, power
sets); pigeonhole principle; cardinality and countability

• Boolean algebra: Boolean values; standard operations on Boolean values;
de Morgan’s laws

CS105. Discrete Structures I

Introduces the foundations of discrete mathematics as they apply to computer science,
focusing on providing a solid theoretical foundation for further work. Topics include
functions, relations, sets, simple proof techniques, Boolean algebra, propositional
logic, digital logic, elementary number theory, and the fundamentals of counting.

Prerequisites: Mathematical preparation sufficient to take calculus at the college level.

Syllabus:

Sample Course Description (continued)
• Propositional logic: Logical connectives; truth tables; normal forms

(conjunctive and disjunctive); validity
• Digital logic: Logic gates, flip-flops, counters; circuit minimization
• Elementary number theory: Factorability; properties of primes; greatest

common divisors and least common multiples; Euclid’s algorithm; modular
arithmetic; the Chinese Remainder Theorem

• Basics of counting: Counting arguments; pigeonhole principle; permutations
and combinations; binomial coefficients

DS1 Functions, relations, and sets 9 hours (6 core + 3)
DS2 Basic logic 5 core hours (of 10)
DS3 Proof techniques 4 core hours (of 12)
DS4 Basics of counting 9 hours (5 core + 4)
AR1 Digital logic and digital systems 3 core hours (of 6)

Elementary number theory 5 hours
Elective topics 5 hours

Units covered:

Sample Course Description (continued)
Notes:

This implementation of the Discrete Structures area (DS) divides the material into
two courses. CS105 covers the first half of the material and is followed by CS106,
which completes the core topic coverage. Because the material is stretched over two
courses—as opposed to CS115 which covers the material in a single course—many
of the units are given more coverage than is strictly required in the core. Similarly,
the two-course version includes additional topics, reducing the need to cover these
topics in more advanced courses, such as the introductory course in algorithmic
analysis (CS210).

Although the principal focus is discrete mathematics, the course is likely to be more
successful if it highlights applications whose solutions require proof, logic, and
counting. For example, the number theory section could be developed in the context
of public-key cryptography, so that students who tend to focus on the applications
side of computer science will have an incentive to learn the underlying theoretical
material.

• Mathematics
– Discrete mathematics
– Additional mathematics is required, but not constrained to calculus

• Science
– Students must be exposed to the scientific method
– Science training can come from a wide variety of fields

• Applications of computing
– All students must study some area that uses computing in a

substantive way

• Communications skills
– Writing
– Oral presentation
– Critiquing

• Working in teams
– Team work should begin early in the curriculum
– All students should engage in a significant team project

CC2001: General Requirements

CC2001: Characteristics of CS Graduates
Knowledge and understanding
Modeling
Requirements
Critical evaluation and testing
Methods and tools
Professional responsibility
Design and implementation
Evaluation
Information management
Human-computer interaction
Risk assessment
Tools
Operation
Communication
Teamwork
Numeracy
Self management
Professional development

Cognitive capabilities

Technical capabilities

Transferable skills

• The curriculum must be adapted for the local environment.
• The curriculum must reflect the integrity and character of

computer science as an independent discipline.
• The curriculum must respond to rapid technical change and

encourage students to do the same.
• Curriculum design must be guided by the outcomes you

hope to achieve.
• The curriculum as a whole should maintain a consistent

ethos that promotes innovation, creativity, and
professionalism.

Strategies and Tactics

• The curriculum must be accessible to a wide range of
students and appeal to their individual strengths.

• The curriculum must provide students with a capstone
experience that gives them a chance to apply their skills
and knowledge to solve a challenging problem.

• Computer science programs must have adequate
computing resources.

• Attracting and retaining faculty will often be a critical
challenge for computer science programs.

Strategies and Tactics (Continued)

CC2001: Relationship to Accreditation
The curriculum should be consistent with
widely recognized models and standards.

—Guidance for CAC Criteria (2002-03)

Under the ABET 2000 structure, programs seeking accreditation
must define concrete objectives and measurable outcomes for
the program, and then demonstrate that those goals are being
met. We believe that the CC2001 curriculum provides several
curricular models that are appropriate for accreditation under the
ABET-CAC guidelines. The CC2001 report, moreover, offers
both a rationale and an assessment structure for ensuring
compliance.

