safety.net

Ubiquitous Computing for Disaster Mitigation, Response and Recovery

Friday, July 5

CRA Grand Challenges.1

Mission Statement

To save lives and minimize damage from disasters through timely prevention, detection, prediction, and coordination.

Enabled by breakthroughs in ubiquitous sensing/actuation, computation, analysis and communication systems.

Technical Challenges

extreme environments and real-time response

- Embedded multi-modal sensor/actuator systems architecture
- Sensor/actuator & communication services
- Sensor information fusion, analysis
- Coordinated response

Embedded multi-modal sensor/actuator systems architecture

- Systems that combine installed, strategically deployed, and mobile nodes to sense and respond to disasters and followon events
- Rapid and adaptive configuration
- Adaptive and collaborative sensing/actuation among resourceconstrained devices (BW, storage, power)
- Biocompatible devices for medical assessment, delivery

Sensor/actuator & communication services

- Localization and mapping (of victims, rescuers, resources,...)
- Resource mobilization (e.g., robots, sensors, actuators)
- Real time response
- Secure, robust, communication systems
 - » Recovery from faulty networks
 - » Reconfigurable networks (self-*)

Sensor information processing

- Information food chain
 - » Calibration of devices
 - » From signals to information
 - » Fusion of multiple sensor modalities
 - » Learning usual and unusual patterns
- Integration with external information sources
 - » e.g. building blueprints, utilities plan, transportation systems, individuals as sensors
 - » Mining and analysis across heterogeneous, unreliable data bases
- Modeling, prediction, planning, and visualization of environment changes due to disaster
 - » e.g., structure collapse, micro-meteorology, "what if" scenarios

Coordinating Response

(Incident Command Response)

- Command and control
 - » logistics, tracking
 - » status reporting
 - » dynamic device and resource reconfiguration
- Communication
 - » data dissemination
 - » language translation
- Interfaces
 - » stressed-user interfaces
 - » multiple visualization formats

Metrics for Success

- Saved lives
- Injury mitigation
- Response-time reduction
- Cost per response
- Mortality of rescuers
- Rate of Technology adoption
- Increase in preventing disasters

Social Barriers

- Monitoring concerns
 - » Privacy
 - » Invasiveness
- Trust of the system
 - » Safety
 - » Rescue personnel resist unproven technology

Spin-offs: From Reactive to Proactive

- Preventative health care (e.g., eldercare)
- Preventing incipient and secondary disasters (e.g., structural integrity monitoring)
- Containing environmental degradation (e.g., contaminants, CO₂, biodiversity...)
- Intelligent transportation systems
- Smart spaces (e.g., classrooms)

Accelerated deployment of ubiquitous computing to improve quality of life