
Grand Challenges Conference Application

Making Computing Tractable for Everyday People
A Grand Challenge for Computer Science and Engineering

Mary Shaw
School of Computer Science
Carnegie Mellon University
mary.shaw@cs.cmu.edu

Many discussions of Grand Challenges focus on heroic challenges -- technological
breakthroughs that provide new capabilities for discrete, newsworthy tasks such as decoding
the human genome, forecasting weather, communicating at extremely high rates, creating
sophisticated images, and the like. These challenges typically have explicit success criteria and
a distinct product. Often neglected, but equally important, are challenges with softer edges and
widespread impact. I propose a challenge of this second type: Make computing and information
technology tractable for everyday people.

Despite extraordinary progress in making computers intelligible to people who are not computer
professionals, it remains very difficult for an everyday person to configure a computer system, to
select and install an individually-tailored collection of applications and data, to establish and
maintain good communications, to tailor an application to individual needs, and -- especially -- to
recover gracefully when anything at all goes wrong. True, a consumer can order a completely-
configured package from a retailer, but this yields a one-size-fits-many solution. Further, there's
little help afterwards with backup, security, critical patches, reconfiguring communications,
recovery after failure, or other system administration problems that arise regularly (one could
say "routinely", but this should not be routine).

Currently,

• Computers and software have a rapid release/obsolescence cycle, and differences between

versions are often hard to understand and manage.

• The internet provides a wealth of useful resources, but with highly variable accuracy and

dependability; an increasing share of everyday activity relies on these resources, and
security (including privacy) is a serious and growing issue.

• Legislation affecting public and private computing is proposed and debated with scant

appreciation of the technical opportunities and risks.

• There is little widespread public understanding of the associated issues of trust and

protection, dependability or product selection and correspondingly little capability for
everyday people to control their own electronic destinies.

The result is that raw computing and communication power is cheap and abundant, but it is not
packaged or delivered in such a way that everyday people can evaluate the available resources,
select those that meet their needs, configure a system with resources from diverse sources,
adapt resources to meet their individual needs, produce well as consume content, and know
how much to trust individual resources and compositions of resources.

Industry is not likely to solve this problem. Their interests are aligned with treating the public as
consumers of their information content, preferably locked in to particular standards, rather than
with empowering the public to create, adapt, and even export their own custom solutions.

Nor is there hope in the computer-as-appliance (or appliance-as-computer) model. Here the
premise is that computers will disappear into everyday objects and we won't have to think about
them. This is attractive as far as it goes, but we see increasingly that those everyday objects
can useful interact with each other and their owners, and denying the owner any discretion
about configuration and control gives up much of the potential of the technology.

A key underlying problem is our growing dependence on complex computing systems
composed by incremental evolution from parts that we only partially understand; important
properties of these systems are difficult to predict.

Let's take as a grand challenge the task of civilizing the electronic frontier sufficiently to enable
everyday people to evaluate, select, configure, adapt, and produce their computing and
information resources, and to know how much they can trust the result. In this way we may
secure the benefits of the technology to the advantage of all our citizens.

What will this entail? A great deal, including research opportunities that depart from the current
common agenda

Evaluate and select
Current approaches to evaluating software emphasize reasoning from first principles. However,
this style of reasoning for systems assumes more precise specifications of components than are
available in practice; further, it does not deal well with emergent properties of systems. It is
unlikely that bottom-up well-founded discrete reasoning will suffice for the complex systems of
interest even in the hands of experts, let alone that everyday people will be able to apply it.
Aggregate approaches have long been discouraged by the argument that our phenomena are
discrete rather than continuous, but I don’t find that compelling -- gas laws describe the
aggregate behavior of large numbers of molecules, insurance creates pools from large numbers
of distinct individuals, and telephony does load analysis aggregating over large numbers of
callers, who are individually as discrete and discontinuous as anything in software. Let us, then,
explore the possibility of aggregate models of reasoning about complex software systems.

Configure and adapt
Current software development models are essentially closed-shop models in which the
developer is assumed to have control over the development process and associated
components. This leads to a model of consumer software in which applications only interact well
if the manufacturer has chosen to support that interaction via explicit integration or external
standards. However, the wealth of resources available on the internet provide an irresistible
opportunity for everyday people to synthesize diverse resources to serve their own needs. This
sort of synthesis is radically different from closed-shop development – resources are under-
specified, they may change without notice, they often do not interoperate gracefully, they may
be used for some incidental functionality rather than their intended purpose. The results are
much more like coalitions than like fully integrated systems. Let us explore ways for everyday
people to synthesize their own applications from independent resources, and to understand the
dependability of the result.

Produce
Current business models are driving the content model of the Internet to an asymmetry in which
most content is controlled and distributed by large suppliers, with individuals acting principally
as consumers and occasional originators of incidental content for personal use. These models
are not sympathetic to the idea that everyday consumers could synthesize significant new
content by refining, remixing, or elaborating on existing resources. Intellectual property concerns
are a major impediment to such derivative works, but technology offers the possibility of
enabling micro payments for micro uses, thereby (perhaps) providing net benefit to the
intellectual property owners as well as opportunity to everyday people to produce new content.
Let us explore ways to restore the original copyright concept of a limited monopoly in exchange
for public benefit and develop business models that encourage, rather than discourage,
everyday producers of creative adaptations.

Trust
Current dependability research focuses on critical systems in which the objective is obtaining
the highest dependability possible and the cost of failure is large enough to justify substantial
investment. Current fault-tolerance models distinguish normal, failure, and sometimes degraded
states and consider transitions among these states. Everyday software, however, has more
relaxed and situation-specific requirements. First, the definitions of degradation and failure may
be application-specific. Second, everyday dependability may be able to exploit types of
evidence that are too informal to be considered for high-dependability analysis. Third when
components are under-specified, specifications of fine structure are unlikely to be better. A
possible alternative to state-based dependability is to define gradients of quality, make situation-
specific judgments about acceptable levels, and add homeostatic mechanisms to
implementations that strive to improve quality whatever its level. A possible alternative to classis
fault tolerance is to detect failure and provide compensation through insurance or warranty. Let
us explore ways to establish how much trust an everyday user needs to place in a system (or
coalition), to determine whether a system is sufficiently dependable for a specific situation, and
to include compensation for failure as an alternative to prevention.

Biography

Mary Shaw is the Alan J. Perlis Professor of Computer Science, Co-Director of the Sloan
Software Industry Center, and member of the Institute for Software Research International and
the Human Computer Interaction Institute at Carnegie Mellon University. She has been a
member of this faculty since completing the Ph.D. degree at Carnegie-Mellon in 1972. From
1992 to 1999 she served as the Associate Dean for Professional Education. In 1997-98 she was
a Fellow of the Center for Innovation in Learning. From 1984 to 1987 she served as Chief
Scientist of CMU's Software Engineering Institute. She had previously earned a B.A (cum laude)
from Rice University and worked in systems programming and research at the Research
Analysis Corporation and Rice University.

Her research interests in computer science lie primarily in the areas of programming systems
and software engineering, particularly software architecture, programming languages,
specifications, and abstraction techniques. Particular areas of interest and projects have
included software architectures (ORCa, Vitruvius, UniCon), technology transition (SEI), program
organization for quality human interfaces (Descartes), programming language design (Alphard,
Tartan), abstraction techniques for advanced programming methodologies (abstract data types,
generic definitions), reliable software development (strong typing and modularity), evaluation
techniques for software (performance specification, compiler contraction, software metrics), and
analysis of algorithms (polynomial derivative evaluation).

She has participated in developing innovative curricula in Computer Science from the
introductory to the doctoral level, including the Immigration Course (1971), a complete
undergraduate curriculum design (1984), a system of professional masters programs (1993-8),
and courses in data abstraction (1979), software engineering (1990), software architecture
(1995), and software engineering research (2000).

Dr. Shaw is an author or editor of seven books and more than one hundred forty papers and
technical reports. In 1993 she received the Warnier prize for contributions to software
engineering. She is a Fellow of the Association for Computing Machinery (ACM), the Institute for
Electrical and Electronics Engineers (IEEE) and the American Association for the Advancement
of Science (AAAS). She is also a member of the Society of the Sigma Xi, the New York
Academy of Sciences, and a member emeritus of Working Group 2.4 (System Implementation
Languages) of the International Federation of Information Processing Societies. She is a past
member of the Computer Science and Telecommunications Board and DARPA ISAT study
group. In addition, she has served on a number of advisory and review panels, conference
program committees, and editorial boards.

