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Proposal: 
 
Why are computers so interesting and so important? Because they make it possible to 
do interesting and important stuff that we couldn't do otherwise. It's not so much that 
they make things cheaper, it's that they make things possible. And because of Moore's 
Law more things are becoming possible all the time. 
 
I still vividly remember writing my first computer program, 42 years ago. I wrote it to do a 
computation that I never would have contemplated doing by hand. What immediately 
hooked me on computers was the feeling of absolute control--here was a device that 
would do exactly what I told it! (Unlike people, and unlike the machines I was used to.) 
Of course, I quickly learned that it wasn't always easy to tell the computer exactly what I 
really wanted it to do. I remember a jingle from that time: 
 

I really hate this damn machine, 
I wish that they would sell it. 
It never does what I mean, 

But only what I tell it. 
 
But we computerniks reveled in our ability to get the computer to do what we wanted--if 
not on first try, then after a moderate amount of debugging. Crashes and other 
deviations from desired behavior were individually investigated. Sometimes it was a 
hardware problem that would be identified using machine diagnostics and then repaired-
-vacuum tubes weren't as reliable as integrated circuits are. But more often it was an 
identifiable bug in the program, something that we would fix--and then test the fix. This 
did not shake our confidence that eventually we would get the program right, and then 
the machine would reliably do what we wanted. 
 
In many ways, we've made enormous progress since those days. Machines are vastly 
faster, more powerful, smaller, and more plentiful--and cheaper, too. Millions of people 
with little or no training or understanding of how computers work use computers to do 
things we didn't even dream of back then. High-level languages, database systems, 
graphical user interfaces, visual application builders, and many other intellectual 
amplifiers enable us to build systems of ever-greater functionality and scale. 
 
But along the way, we have lost our confidence that any one of us can surely get a 
computer to always Do the Right Thing, if we just work hard enough at it. 
 
I no longer have confidence in the trustworthiness of the computers I rely on daily. I no 
longer expect every crash to be investigated. It no longer surprises me that customer 
support's first suggestion is to reboot the machine--or that rebooting without investigation 
is frequently the most cost-effective thing to do. I don't blame any single supplier for this 
loss of confidence, because every vendor in the industry leans over backward not to give 



any warrantee or assurance that what they sell will operate correctly and not cause 
damage. 
 
What has happened? At least two things: 
 
1. The exponential increase in hardware power described by Moore's Law has led to a 

corresponding increase in the complexity of what we do with computers. However, 
there has not been a corresponding increase in our ability to master that complexity. 
No one understands the whole of any system anymore--not the hardware, not the 
operating system, not the network, not even individual applications. When something 
goes wrong, we can often only speculate which component--or interaction of 
components--caused the 
problem. 

 
2. We have let software vendors get away with it. Market forces drove Intel to recall 

Pentium chips that occasionally made small errors in division. When was the last 
similar software recall? And why should vendors invest in quality that customers 
don't demand? It's features that sell software! As I read in ACM's "Ubiquity" last 
summer, "Software managers and developers give lip service to quality while 
customers grow accustomed to buggy software." 

 
Here is a conundrum: Hardware reliability seems to be increasing, despite the 
exponential growth in chip complexity, and the increasing size of the teams designing 
new chips. Yet software reliability seems to be decreasing. What is the difference? Do 
hardware engineers do a better job: 
 
• of partitioning their systems? 
• of specifying their interfaces? 
• of designing for reliability and testability? 
• of verifying and testing their designs? 
 
Or does the extra expense of dealing with hardware errors just make everybody more 
cautious? 
 
I believe that one important difference lies in interface specification. Generally, only 
hardware interfaces are sufficiently well documented that components can be rigorously 
tested against specifications. Hardware engineers have a long history of careful interface 
specification, dating back to the time of discrete components, based on the notion that 
components should be interchangeable. The interface that the hardware presents to the 
software is carefully specified and slow to change. Put a new CPU chip in your system, 
and all the legacy software had better still run; install new software and all bets are off. 
There's too much truth in the quip that "Hardware is the part of the system that you can 
change easily, software is the part that you can't." 
 
I see three major challenges in the area of software interface specification: 
 
1. Writing specifications that software developers can use--specifications 

that: 
• precisely define all the necessary properties of the software, 
• do not unnecessarily constrain the implementation, 



• can be used to verify the implementation, and 
• are readily understood by implementers. 

 
2. Writing specifications that capture what it is that users want, and do so in a way that 

they can understand them: 
• to verify in advance that the system being designed is the system wanted, and 
• to precisely understand the behavior of the specified system--to know what 

to expect, and how to accomplish what they want to do. 
 

3. Persuading the parties involved that precise interface specification is worth the cost. 
This may well be the hardest problem of the three. 

 
I'm not aware of any attempt to quantify the economic costs of software unreliability and 
incomprehensibility. But they must be enormous. The massive efforts invested in 
checking software for the well-publicized Y2K problem and fixing it as necessary were 
just the tip of a tip of this iceberg. The time lost to rebooting, to recovering lost data, to 
repairing hardware that falls victim to computer rage, etc., tends not to show up in the 
accounts anywhere--let alone the costs of recovering from incorrect results produced by 
computers. But these are real costs, distributed throughout most of the economy. I've 
heard it seriously suggested that computerization has been a net drain on the American 
economy over the last half-century. But computers enable us to do interesting and 
important stuff that we couldn't do otherwise, so refusing to use them simply isn't an 
option. 
 
The most important challenge for Computer Science and Engineering is figuring out how 
we can make computers do what we want them to do--and then actually making them do 
it. 
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