

Prepared by B. Herzog Page-1 5/30/02 3:57 PM

Biography and Proposal
by

Bertram Herzog

University of Michigan, Ann Arbor
and

Fraunhofer CRCG
Providence, RI

Bio

This short bio should suffice for my contribution. As a late joiner to this workshop I
appreciate being included. Originally I requested to be “a fly on the wall” to observe this
workshop. Why? I am charged with organizing a similar “Challenge” but focused on a
derivative of Computer Graphics. My attendance is contingent upon presenting a
proposal. Having the advantage of reading early submittals I am encouraged by the fact
others seem to have similar concerns.

My training was in physics and engineering mechanics beginning in 1945 at Case
Institute of Technology (now part of Case Western University) and to be followed by
obtaining the Ph.D. at the University of Michigan in 1961. In between I practiced
structural engineering.

My first computer experience was using analog computers during my masters degree.
Digital computing came through working on the Ph.D. dissertation. In 1963 I took a leave
from my professorial position at Michigan to manage a department in Product Research
at Ford Motor Company. Circumstances put me in touch with the field of Computer
Graphics and Professor Steven A. Coons at MIT. I have been active in that field ever
since. Along the way I directed the building of an early computer network (the MERIT
network in Michigan), directed a computing center (University of Colorado), consulted,
was a founder of a startup in CAD, and returned to Michigan as part of the Information
Technology Division. After retirement in 1992 I resumed teaching and consulting. In
1998 I joined the Fraunhofer Center for Research in Computer Graphics as Vice
President and Chief Operating Officer. Today I remain as the President’s Deputy.

Some long time ago I received a NSF Fellowship without which the Ph.D. might never
have been achieved. I am a Fellow of ACM and will receive the SIGGRAPH Outstanding
Contributions Award in July 2002.

My experience with systems engineering is thus peripheral but I want to offer a
challenge not so much in research directions but a challenge in engineering practice for
computer systems engineering.

Challenge

The challenge is to achieve the level of Professional Engineering responsibility in
“computer systems” as can be found in traditional product engineering professions We
should expect well engineered software. We should expect well engineered hardware. In
other words, we should expect good system engineering combined with marketing
strategies. May we ask for error-free systems? Certainly. Will we get them? Of course

Prepared by B. Herzog Page-2 5/30/02 3:57 PM

not. Absolute freedom of error is likely not possible However, the current level of
awkward user interfaces and functional application interfaces combined with numerous
bugs is not acceptable.1

This point is often disputed by defenders of current products – erroneously in my
opinion. The cause of the issue, in my judgment, comes from the lack of application of
sound engineering principles. Rather than adhering to clear engineering principles we
have obtained products with confusing architectures and an excess of features. A lot of
this arises from a disproportionate adherence to marketing input without the requisite
balance of engineering. The very popular word-processor on which this essay is being
prepared epitomizes this malady. All too often the word processor wants to help me with
features for which I have no use and for which I can not find an easy way to escape.

There is no point to harangue more on this matter. The need for this challenge is
recognized by many. The solution requires a major shift in practice. The solution,
however, is not much fun compared to intriguing new research directions. However, not
tackling the situation is an abrogation of fundamental product engineering
responsibilities. May this workshop at least recognize this product engineering challenge
while it is sorting through the many interesting proposals for research challenges.

Attachment

The Future and its Enemies?

by

Bertram Herzog
University of Michigan

Ann Arbor, MI, USA
and

Fraunhofer CRCG
Providence, RI, USA

Introduction

It is generally accepted that the current state of information technology,
especially as epitomized by its most widely distributed products, is less than optimal if
not down-right bad. This essay seeks to offer a proposal for altering the situation and
hopes that colleagues at this workshop will add their insights either to reject the initial
assumption (unlikely) or, more likely, to refine or replace the proposal.

Today we have enormous computing power at our fingertips and at consumer
and disposable prices. This workshop’s colleagues, I expect, will provide their visions,
inventions, and points of view that will extol a glorious vision of the future and even

1 This point is pursued in an essay, published elsewhere, entitled “The Future and its Enemies.” A copy is
attached for the curious.
? Postrel, Virginia, The Future and its Enemies, The Growing Conflict Over Creativity, Enterprise and
Progress, The Free Press a division of Simon and Schuster, New York, NY, USA, 1998.

Prepared by B. Herzog Page-3 5/30/02 3:57 PM

greater advances to come. Nevertheless, I feel it is necessary to examine the current
situation lest we build the next generation of products on the shaky foundation of current
products.

At this point, I want to mention the “Principle of Least Astonishment.” Simply put,
it states one should not be astonished by the results obtained from a computer. This
statement, originally offered in the good old batch processing days surely applies more
urgently in today’s highly interactive computing world. The principle needs to be applied,
in my opinion, as a test for all computer applications and innovations.2 On that basis
alone, I believe current products are shaky. This conclusion is emphatically supported by
Norman in his book “The Invisible Computer3” wherein he identifies the folly of ever more
technopower, more megabytes and more megahertz, rather than attending to user
needs or requirements. Norman identifies a solution that favors the notion of limited and
specific task-oriented information appliances. I want to propose another, though
complementary, solution. The solution will specify architectural considerations and
design and manufacturing process matters.

The Complaint or Problem

So what is the complaint? What we deliver as information products are of
alarmingly low quality. I use many of the so-called productivity tools on a regular daily
basis. I hardly ever write with pen or pencil any more. My lap top computer and its word
processor, the spreadsheet program, several database products, and the slide maker
might just as well be attached via my umbilical cord. I can more easily do without my
automobile than do without my laptop or desktop computer. However, the violations of
the Principle of Least Astonishment alone descend upon me with astonishingly high
frequency. The surprises are never ending. Worse, however, are the occasions when
what should be conceptually and easily satisfied eludes the user trying to ferret out the
“how to” from the user interface, from the manual if it exists or is incomplete, or from the
help file.

Like so many others I use these products because they help me do my daily
work. Like so many others I can use trial and error to solve problems. Electronic
spreadsheets are the liberators from the green eye shades and the paper spread sheets.
The improved productivity is real. To dampen this enthusiasm we can point out, all too
often, that it takes dedicated persistence to climb the learning curve when easy and
intuitive methods should be available. The marketers can demonstrate that millions of
happy users are using these tools. My conjecture is that these millions each are using
less than five percent of what is provided. Do they need more? Would they use more if
made readily available? Good questions. We can invoke the 80-20 rule. Eighty- percent
probable don’t need more. The other twenty- percent would like to use more if they could
discover what is available or, if known to be available, if they could find out how to use
more. When I claim that most people use less than, say, five percent of the potential I
must hasten to add it is not the same five percent.

Early instantiations of word processors were simple and the interface presented
itself accordingly. For example, the taxonomy of a document could be: a document
consists of sections, or chapters; sections consist of paragraphs; paragraphs could be
styled and each style could be named and have its attributes specified. Documents
could be presented on pages whose margins were specifiable. Each element of this

2 Need one mention the blinking interface of VCRs?
3 Norman, Donald A., The Invisible Computer, The MIT Press, Cambridge, MA, USA, 1998.

Prepared by B. Herzog Page-4 5/30/02 3:57 PM

taxonomy could be clearly and reasonably independently described and specified.
Interaction between these elements could be specified so that widows and orphans
could behave in a specified manner – if not always in the expected manner in the
execution! A good taxonomy would be implemented using object-oriented principles.
Paragraphs would be a member of an object class that would include tables and
graphical objects. We need not mention the concept of pointers to embrace the
advantages of hypertext. So much for simple principles upon which to build more
complex and specialized (for the local knowledge pool and needs) custom applications.

Instead, we now have feature bloat. Word processors, for example, have evolved
into feature-laden applications (see Figure 1). Norton cites that Microsoft Word, by
1992, had 311 commands, but five years later, the count had reached 1,033 commands.
That is a lot of commands to explore for their possible utility. Each feature useful for
some specialized purpose is used to enlarge the pool of non-overlapping five percenters.
However, if one of these initially satisfied users wants to venture toward another use
then these unprincipled features refuse to bend, intuitively or via documentation, to meet
that need. I want to be able to extend a particular use in a smooth and incremental way.
Those that disagree with this complaint dismiss it by stating: “Of course, I turn off all
those features before I even use the word processor.” Unwittingly, they underscore my
position on this matter. Further, it should be noted that “turning off” these features is not
such an obvious alternative for most users. Why not reverse the situation? Start out with
a concise but capable core, which can be extended to provide features, built upon the
core, and able to be invoked by those needing the specialized feature. It used to be
possible to instruct novices easily in the use of word processors using a simple
taxonomy and its associated structure. Now, it is necessary to remember where to find
each feature distributed over menus in an unpredictable manner.

The Luddites refuse to use newer versions of the feature-bloated applications. A
typical comment is: “I continue to use my older Mac and MacWrite, thank you.” This is
just fine for the isolated user who is totally content with the increased productivity of an
older, less capable, but sufficiently productive application. That same Luddite, however,
also reported recently that when seeking help with an older version of a slide making
program he was told by the original supplier: “We no longer support that version but you
can obtain help from Company X specializing in support for the unsupported version” - at
$37/hour, of course.

Apart from isolation, the ultimate result of not keeping up with the latest versions
eventually leads to inoperability when the computer fails and a newer model needs to be
purchased. The cherished old friendly application will not run and the Luddite must catch
up with the latest and greatest after all. The vendor is the apparent victor.

The Architectural Solution

What I seek is a conceptually clear and compact architecture for the application,
and its application core, that is able to perform the fundamental operations. Such a core
application can then be extended and provided with specialized user features and
interfaces to match a particular market segment, see Figure 2. Developing such an
application tempts one to classify it as a good engineering accomplishment – a
successful software engineering accomplishment. Clearly, we have not yet reached this
ideal.

Prepared by B. Herzog Page-5 5/30/02 3:57 PM

The Process Solution

That the process of creating information technology products is faulty is not
subject to argument. To put it more civilly, the process can be improved. But how?
Norton and others argue that technologists dominate the industry. Engineers fiddle with
a product without considering what a user wants. These critics propose, as an antidote,
that marketing should and must control the products. They assert that to find out what a
user wants we need marketing people. Only they can find out what users want and thus
the marketing people must specify what engineers should produce. At a recent meeting
of a software consortium this credo of distinction between engineers (read programmers)
and marketing people was religiously upheld.

The implied lesson is that users can describe what they want and engineers can
produce the consequent application to achieve the desired result. However, a good dose
of technical analysis and knowledge can be and must be used to obtain a far more
reasonable and efficient result. Technical efforts in the absence of user input (market
studies) are as foolish as using market studies alone to specify technical requirements. I
blame the feature bloat, mentioned above, on an excess of real or perceived market
driven demands with insufficient technical analysis to define the core technical
application capable of meeting those demands in a coherent technical manner. This is
a faulty over-reaction which can be construed to be the source of the Feature Bloat
mentioned above. The dichotomy of technologists and marketeers is too simplistic.
Therefore, it is appropriate to make a proposal.

A Proposal

As a starting point, I borrow freely from the automobile industry. The products
delivered by all automakers appear to satisfy the market demands. Further, the product
is delivered on time: when new car models are to appear in the showroom they are
there.

The software production and delivery process can be modeled with four essential
elements:

Marketing

Product Planning

Engineering (or engineering product design)

Manufacturing (including especially quality assurance).

Here neither marketeers nor technologists are ignored. One of the roles of
marketing is to measure what customers want. Ultimately, marketing must define
market niches and sales strategies to help the sales force deliver the product.

There are two distinctive features I want to emphasize: product planning and
product design. Product planning is a separate function in the quartet of marketing,
product planning, design, and manufacturing. The role of product planning is to specify
the product intended to meet the market demand but with full consideration of the
advantages and constraints of design and manufacturing. In software applications the
manufacturing process is relatively simple but does include quality assurance and
testing – one wonders at times to what degree these two elements are neglected.

Prepared by B. Herzog Page-6 5/30/02 3:57 PM

Engineering design, for automobiles, involves disciplines such as machine design,
electronics and other disciplines as analysis and algorithms should in software design.
But it does not end there. Drawings are made manually or now via CAD. These drawings
are checked by one or more levels of checkers or supervisors who acknowledge
compliance with product plans and engineering practice. It is not news that software
engineering generally fails to omit these critical steps of checks and balances. My
experience grounded in such practices leads me to be cynically suspicious of our
software production methods.

As in the auto industry, the combined roles of engineering and manufacturing
require special attention also in software production. One could argue that in the
software industry, manufacturing is merely making CDs and manuals and that software
development and production is an engineering function. No matter how that is resolved
one can agree that technological innovations originate from engineering/manufacturing.
Production of software is similarly a combined responsibility. Structured programming,
style recommendations and object-oriented design are recognized to help but are all too
often ignored in practice. Having designers be the testers and judges of quality. The
dismissal of well-established practices is, in my opinion, a major cause of the malady.
Practicing software engineers need to be persuaded about the merits of such practices.
These practices are especially needed in an industry where change and innovation
proceed with greater speed than in any other field of engineering.

A Matter of Attitude or Practice

There is another troublesome behavior or attitude held by information
technologists and especially programmers. How often have you heard the statement:
“We are researchers. We do not produce code of production quality. We just cobble up
an implementation of our ideas to demonstrate their feasibility. We just barely make a
demonstrable prototype.”

A sense of double outrage engulfs me when I hear that statement – and I hear it
all too often. I value my research efforts too much to endanger them by implementing
them with sloppily developed code. How many times have research efforts prompted
new and cleverer discoveries? Therefore, I must write well-structured and easily
revisable code to meet the demands of new research results. Sloppily written programs
most likely will produce erroneous results in the first place. A prototype may not be ready
for prime time because it is incomplete for full production use. However, it should never
be implemented with other than first class code. Unfortunately the believers in the above
quotation not only eschew good programming practice but also almost deliberately hack
code that inevitably must be thrown away - seemingly, by design! The concept of
cobbled code is unprofessional, at least, and possibly evil. The practice of cobbled code
can only be deplored and then stamped out.

Conclusion

An immediate conversion from the present bloated and ill behaving application to
a conceptually concise and compact core application may ultimately be economically
necessary but may not be a marketable idea. Still, to avoid collapse under the sheer
weight of bloat demands a strategy of replacement. Before such a replacement can be
undertaken we need to recognize the folly of our current practices and move to a more
deliberate application building approach. In other words we have identified the enemy of

Prepared by B. Herzog Page-7 5/30/02 3:57 PM

the future and the enemy is “us.” Ending on a note of optimism: when we throw out the
old bloats and replace them with the trim and fit replacements, we know that our children
will easily adopt our new products.

I hope this essay will foster some discussion to refine the proposal and to elicit
suggestions and directions for the future. If we carry on as we have so far the future is
doomed. Let’s convert us from enemies to liberators.

Prepared by B. Herzog Page-1 5/30/02 3:57 PM

	Herzog Bio
	Proposal
	Attachment

