
Biography

W. Keith Edwards is a Senior Member of Research Staff in the Computer Science Lab at the Palo 
Alto Research Center (which until recently was the Xerox Palo Alto Research Center). His 
research interests lie at the intersection of distributed systems and human-computer interaction. 
More specifically, he is interested in understanding the ways in which aspects of distributed sys-
tems can “show through” to manifest themselves as part of user experience and, in turn, the impli-
cations of that for the design of distributed systems.

He has been involved with a number of research projects that explore this area of interest, ranging 
from infrastructures for peer-to-peer ubiquitous computing, document management systems, 
computer-augmented whiteboards, auditory user interfaces, flexible version control systems, and 
replicated, weakly-consistent distributed databases. He holds a Ph.D. in computer science from 
Georgia Tech, where he did his dissertation work on one of the first infrastructures designed to 
support context-aware computing applications.

He is the author of over thirty refereed publications, as well as two books on Sun’s Jini distributed 
computing technology and an upcoming book on the architectures of window systems and graph-
ical toolkits. He holds eight U.S. patents. 



Bringing Network Effects to Computing Systems
W. Keith Edwards
Palo Alto Research Center (PARC)
kedwards@parc.xerox.com

For the most part, current computational devices and services, although network-capable, are 
locked into isolated islands of interoperability: systems that were explicitly built to work with one 
another can interoperate, while others cannot. We pay a price for this lack of interoperability. This 
price can be framed in terms of the huge cost of software and equipment made obsolete before 
their time, developer effort spent building “bridges” between otherwise inoperable technologies, 
and the opportunity costs of users being unable to use the systems around them at the time they 
need them.

This situation stands in contrast to what we experience daily with the telephone network. My 
rotary dial phone, circa 1965, is able to connect to devices such as cell phones, over protocols 
such as GSM, neither of which existed when my telephone was built. Further, it is able to do so 
without upgrades or driver installation. Our computing systems certainly do not have this prop-
erty. Network interoperability in the domains of desktop computing, handheld computing, enter-
prise software services, and others, is often fraught with driver installation, software upgrades, re-
coding, and hardware installation.

I propose that we in the computing systems community direct ourselves to the challenge of 
enabling network effects, like those seen in the telephone network, for the arbitrary computational 
devices, services, and applications that play increasing roles in our lives. A network effect is a 
property of a distributed system in which the overall utility (or value) of any part of the system 
increases as the overall system grows. In the telephone network, for example, my phone becomes 
more capable, in a sense, as more users come online—it can reach more and more people without 
any change to the phone itself.

Network effects for computational devices and services would allow similar exponential utility 
curves: quite simply, the PDA in my hand should be able to do more things, as more devices and 
services come online around it. For this vision to become reality, the calculus of effort must be 
turned on its head: rather than requiring every existing node on the network to be upgraded to 
accommodate the newcomer—a task that will become only less and less practical as the numbers 
and types of networked devices explodes—the addition of the newcomer itself should carry with 
it the knowledge needed by existing nodes to use it. 

This reversal necessitates a change in architectural thinking, but the benefits of delivering such an 
architecture are compelling. Most directly, network effects enable a new economy of compatible 
technologies, each of which adds value to the next. These economic benefits have been demon-
strated by network effects in areas such as European mobile telephony, the i-Mode service in 
Japan, and the World Wide Web. Second, by enabling more fluid interoperation we have the 
potential to greatly increase productivity: users and developers can serendipitously recombine the 
resources around them, without advance planning or coding. Finally, we can allow users to repur-
pose technologies to uses their designers did not foresee, and did not even plan for. Resources on 



the network can be composed into virtually arbitrary functions, limited only by the semantics of 
those resources, rather than the particulars of how they communicate. 

How would one begin to enable such network effects? Network effects require the ability to com-
municate and, fundamentally, all communication between two parties presumes some shared 
knowledge, agreed to in advance by both. For my laptop to use my cell phone as a modem, both 
must have been explicitly programmed to speak a common protocol, such as RFCOMM or 
IRCOMM. The web—inarguably the most powerful example of true network effects for comput-
ing systems today—requires agreement between the web browser and the web server on a handful 
of protocols (HTTP, FTP) and data types (HTML, XML) known a priori to both parties. Web ser-
vice frameworks require that the client of a service know that service’s interface, typically as 
expressed in a description language such as WSDL. There are many other examples.

The challenge for the systems community, then, is to explore new levels of shared knowledge 
among computational entities—these are new architectures of agreement among the parties that 
communicate. These architectures should allow rich, serendipitous interactions among devices 
and services without the “lowest common denominator” approach of settling on an arbitrary set of 
protocols assumed to be known in advance to all parties. These architectures should be able to 
accommodate user-driven interactions (such as in the web), as well as program-to-program inter-
actions (such as those envisioned by web services).

A number of such new architectures of agreement have been explored by the research community 
already. The semantic web is one example—the semantic web proposes a shared ontology that 
represents some portion of human knowledge, agreed upon and understood by all parties in a 
communication. This approach, however, has weaknesses: first, it requires the creation of the 
ontology itself, and second, it requires that the parties be coded to “understand” a sizeable body of 
knowledge, albeit encoded in an machine-parsable format. As another example, mobile code-
based approaches such as Jini offer the ability for entities on the network to dynamically extend 
the behavior of their peers. These approaches also have their weaknesses, namely the requirement 
for agreement on a shared executable format, and the security problems that that brings.

I believe that these, as well as other, approaches must be explored. In particular, I contend that 
architectures of agreement that require less effort on the part of developers (in other words, nar-
rower interfaces) will be required if true network effects are to occur—the burden on builders of 
devices and services should be as small as possible. I further contend that approaches that require 
prior agreement on a range of domain-specific interfaces are doomed to failure (this is largely the 
situation now, where my computer is coded to speak to printers via IPP, file servers via CIFS, and 
so on; speaking to other sorts of entities requires explicit coding to adapt the system to their par-
ticular interfaces). 

In summary, the challenge of bringing network effects to arbitrary devices and services requires a 
fundamental rethinking of the way we architect our systems for communication. I believe the 
potential payoffs of solving such a challenge greatly outweigh the costs and risks of addressing it.


	Edwards Bio
	Proposal

