
 

Programming environments: A grand challenge 
Gregory D. Abowd 

College of Computing and GVU Center 
Georgia Institute of Technology 

 

We are all familiar with Weiser’s eloquent vision of ubiquitous computing (ubicomp) 
described in the September 1991 issue of Scientific American.  Over the past few years, 
attempts to approximate that vision have lead me to believe there is a very important, and 
mostly unsung, challenge that stands in our way. We need to build more programmable 
environments.  Our computing ancestors leveraged metaphors from the physical world to 
make computing easier for the masses to use.  Now the tables are turned and to make 
ubicomp easier we need to leverage experience from the computing world and consider 
the physical world as a programmable input/output environment.  Getting there involves 
overcoming some significant challenges in rethinking what we mean by input and output 
and how we can provide programmatic control to unleash the creative power of 
interaction designers of tomorrow. 

A lot of the early progress in interactive computing appealed to our understanding and 
comfort with phenomena in the physical world.  We are all comfortable with objects in an 
office and familiar with actions like filing papers in a cabinet, so it was natural to appeal 
to that physical metaphor, the desktop, to draw us easily into the world of personal 
computing. Direct manipulation flourished because it was the creation of a digital world 
of objects reflecting some of the properties and behaviors of objects in the physical 
world.  We have even gone so far as to create all-encompassing virtual worlds that 
recreate many of the aspects of the physical world.  

Many bemoan the stagnant state of our interactive experience as defined by desktop 
computing. Weiser did not envy the progress of virtual reality, for he thought VR was 
anathema to his own vision of ubicomp.  While I agree with some of these sentiments 
(the older forms of interaction are not close to the ubicomp vision of interaction), I envy 
my colleagues trapped in a 2-D GUI or a head-mounted display.  They have built 
themselves tools that ease the pain of implementation, thus encouraging creative 
exploration.  When liberated from the monotonous technical details of implementation, 
designers maximize the potential for human interaction with technology.  User interface 
toolkits, builders and programming environments made a world of difference to the 
variety and quality of the desktop computing experience.  

If we borrow the analogy of the toolkit or programming environment for ubicomp, what 
are the challenges that we face?  The fundamental challenges are to redefine what 
constitutes input and output and how they are tied together to provide for interaction 
within a physical environment. Input is generalized as sensing followed by interpretation 
and output as actuation at one or more locations. These new definitions should lead to 
mechanisms for handling input and output in a programmable physical environment. 



What qualifies as input and how is input in an environment is different from input on a 
personal computer?  Input on the PC is mostly explicit activity by the user, largely 
through keyboard and selection device.  While that input language is being extended to 
include other explicit forms, such as speech received by a microphone or gestures seen by 
a camera, it is important to consider the implicit forms of input. By implicit, we mean the 
information describing a situation that can be inferred without requiring any further 
commentary (i.e., explicit mention) by an individual.  By walking into a room, a person 
implicitly announces her presence. A person engaged in a conversation with another 
individual is implicitly indicating her lack of availability to anyone else.  Humans 
continuously gather and interpret these implicit cues from the environment and people 
around them.  This implicit situational information is referred to as context and there is 
much active research in the area of context-aware computing.   

The challenges that arise with context are many, and they must all be overcome before 
we can interpret activity in a physical environment as valid input to any “program” we 
might create to react to those actions appropriately.  There is no standard representation 
for the context of everyday life. There is a small set of actions that are considered the 
language of explicit action for a PC.  No such vocabulary exists for implicit action in the 
real world. Context, as we have described it, is sensed in the environment, and the 
capabilities of automated sensing and perception pale in comparison to what a human can 
do.  Interpretation is inherently ambiguous. To handle context as input, we must be able 
to model ambiguity and carry multiple interpretations of the same sensed phenomenon. 
Context as input is persistent, meaning it needs to be modeled, retained and adapted over 
time. A single piece of active context should not be viewed as directed toward a specific 
application, but rather it should now be considered available for any application. One 
extreme form of sensing is raw capture, an attempt to record a live experience so that it 
might be replayed in some synthesized form at a later time. 

There is no point to gathering information about the present and the past if it is not used 
to shape and influence the future.  Actuation is the generalization of displaying output.  It 
begins with a generalization of the kinds of visual displays we take for granted now in 
personal computing, except now the display should take on a variety of sizes and 
resolution and be available in many places.  Initially, this will happen with a growth in 
the number of dedicated visual displays, but that will be replaced by projection 
technology that can display on any surface within an environment.  Once we increase the 
number of locations for visual display, the challenge will be in determining the 
appropriate place for any given piece of information to be displayed.  And visual display 
is only one way to alter or actuate the physical environment.  A model for output must 
encompass all of the ways we can influence the perceivable nature of an environment. 

It is a significant challenge to produce a single convincing example of a computationally 
enhanced environment that gives a glimpse of Weiser’s vision of ubicomp.  It is indeed a 
grand challenge to produce an environment in which others can more easily and 
creatively explore that vision as well. 



Gregory Abowd 

 

Gregory D. Abowd (pronounced AY-bowd) is an Associate Professor in the College of Computing 
at Georgia Tech. His research interests lie in the intersection between Software Engineering and 
Human-Computer Interaction. Specifically, Dr. Abowd is interested in ubiquitous computing 
(ubicomp) and the research issues involved in building and evaluating ubicomp applications that 
impact our everyday lives. In the College of Computing, he is directly involved with research with 
faculty from Software Engineering, the Graphics, Visualization and Usabilty (GVU) Center and the 
Georgia Tech Broadband Institute. 

 

Dr. Abowd received the degree of B.S. in Mathematics and Physics in 1986 from the University of 
Notre Dame. He then attended the University of Oxford in the United Kingdom on a Rhodes 
Scholarship, earning the degrees of M.Sc. (1987) and D.Phil. (1991) in Computation from the 
Programming Research Group in the Computing Laboratory. From 1989-1992 he was a 
Research Associate/Postdoc with the Human-Computer Interaction Group in the Department of 
Computer Science at the University of York in England. From 1992-1994, he was a Postdoctoral 
Research Associate with the Software Engineering Institute and the Computer Science 
Department at Carnegie Mellon University.  

 

In the Fall of 1999, the Georgia Tech Alumni Magazine did a profile on Dr. Abowd and some of 
his research.  

 

For additional information, see: http://www.cc.gatech.edu/fac/Gregory.Abowd/ 

 

http://www.cc.gatech.edu/fac/Gregory.Abowd/

	Abowd Proposal
	Bio

