Cellphone Security

David Wagner

U.C. Berkeley

daw@cs.berkeley.edu

Organization

- Analog cellphones: historical notes
- US digital cellphones
- European digital cellphones (GSM)

In the beginning...

- Earliest cellphones were just a two-way radio.
 - Gave you nothing more than a voice channel to Ma Bell.
 - You told the operator the phone number and your billing information, and the operator connected you.
 - No handoff, no roaming, nothing fancy.

In the beginning...

- Earliest cellphones were just a two-way radio.
 - Gave you nothing more than a voice channel to Ma Bell.
 - You told the operator the phone number and your billing information, and the operator connected you.
 - No handoff, no roaming, nothing fancy.
- Security:
 - Engineers assumed specialized receivers too expensive to pose any real threat—and they were right.
 - With that caveat, you were safe.

Automated billing

- Second generation soon arrived:
 - Each cellphone given a MIN/ESN pair.
 - * ESN: 32-bit serial number, "burned" into cellphone
 - * MIN: your phone number
 - During call origination or registration, cellphone sends
 MIN/ESN pair to base station for billing purposes.

Automated billing

- Second generation soon arrived:
 - Each cellphone given a MIN/ESN pair.
 - * ESN: 32-bit serial number, "burned" into cellphone
 - * MIN: your phone number
 - During call origination or registration, cellphone sends
 MIN/ESN pair to base station for billing purposes.
- Security:
 - No worse than before...
 - Scanners still assumed to be too expensive.

Roaming

• Strong motivation to support inter-provider roaming

- Consumers clamored for it!

Roaming

- Strong motivation to support inter-provider roaming
 - Consumers clamored for it!
- Security:
 - How to reconcile billing betw. remote & home provider?
 - Reconcile after fact?

Roaming

- Strong motivation to support inter-provider roaming
 - Consumers clamored for it!
- Security:
 - How to reconcile billing betw. remote & home provider?
 - Reconcile after fact?
 - Bad idea: too easy to cheat the system!
 - Detect cheaters & share blacklists between providers?

Tumbling

- Exploit lack of realtime authentication:
 - At one point, default was to accept roaming users, and blacklist misbehaviors after they're discovered.
 - Thus, the first call always went through when roaming.

Tumbling

- Exploit lack of realtime authentication:
 - At one point, default was to accept roaming users, and blacklist misbehaviors after they're discovered.
 - Thus, the first call always went through when roaming.
 - And that call could last a long time...

Tumbling

- Exploit lack of realtime authentication:
 - At one point, default was to accept roaming users, and blacklist misbehaviors after they're discovered.
 - Thus, the first call always went through when roaming.
 - And that call could last a long time...
- Attack: tumbling phones
 - Pick a new MIN/ESN pair at random for each call

Cloning

How to clone a cellphone:

- 1. Obtain a valid MIN/ESN pair.
 - Usually with the aid of a scanner.
- 2. Program that into your handset.
- 3. Call for free.

Cloning in practice

- Cloning attacks became very sophisticated
 - Black boxes automate the process, cheaply
 - Cloners harvest many MIN/ESN pairs from airports, highways
 - Stealthy cloning: combine with tumbling and/or roaming
- Cloning became a serious problem
 - Big players: Underground call-sell operations, anonymity-loving criminals
 - US industry loses \approx \$650 million / year.
 - Perhaps 5% of all calls were fraudulent, as of 1995.
 (And in Oakland on Friday night, reportedly 60%–70%.)

Scanners & voice privacy

- Scanners became widely available
 - Mass-market items: \approx \$300 @ Radio Shack
 - Range in miles, can scan many channels quickly

Scanners & voice privacy

- Scanners became widely available
 - Mass-market items: \approx \$300 @ Radio Shack
 - Range in miles, can scan many channels quickly
- This became a serious privacy problem
 - \approx 10-15 million scanners sold
 - pprox 50 million users
 - ⇒ It seems plausible that the majority of analog cellphone users have had one of their calls intercepted at some point.

Summary on analog cellphones

- Everything that could go wrong, has.
 - Threat models changed out from under the designers
 - Deployment scaled up; security architectures didn't
 - We've trained & funded a large criminal underground in cellphone hacking
- Analog systems are now totally insecure

Part II: US Digital Cellphones

Who's trusted?

- Internal network, PSTN
- Legitimate users and their handsets
- Roaming partners
- The crypto

Who's trusted?

- Internal network, PSTN
- Roaming partners ~ untrustworthy!
- The crypto ~> broken!

The crypto

- CAVE: authentication and key derivation
- XOR mask: voice encryption
- CMEA: control channel encryption
- ORYX: wireless data encryption

The crypto

• CAVE: authentication and key derivation

 \rightsquigarrow no attacks known

• XOR mask: voice encryption

→ breakable in realtime via ciphertext-only attack [B92]

- CMEA: control channel encryption
- ORYX: wireless data encryption

The crypto

• CAVE: authentication and key derivation

 \rightsquigarrow no attacks known

• XOR mask: voice encryption

→ breakable in realtime via ciphertext-only attack [B92]

• CMEA: control channel encryption

→ breakable in hours via known-plaintext attack [WSK97]

• ORYX: wireless data encryption

→ breakable in seconds, ciphertext-only attack [WSDKMS98]

- Attack #1: Look for plaintext
 - Encryption is rarely, if ever, enabled

- Attack #1: Look for plaintext
 - Encryption is rarely, if ever, enabled
 - ~> Can snoop on calls, credit card numbers, ...

- Attack #1: Look for plaintext
 - Encryption is rarely, if ever, enabled

~> Can snoop on calls, credit card numbers, ...

- Attack #2: Check for known keys
 - Many handset manufacturers use all-zeros keys (key management considered too expensive)

- Attack #1: Look for plaintext
 - Encryption is rarely, if ever, enabled

~> Can snoop on calls, credit card numbers, ...

- Attack #2: Check for known keys
 - Many handset manufacturers use all-zeros keys (key management considered too expensive)

~> Can make fraudulent calls, intercept other calls

Bottom line: it all relies on lack of digital scanners

Part III: European Digital Cellphones: GSM

A trust analysis

Who's trusted?

- Internal network, PSTN
- Legitimate handsets
- The crypto

Who's not? (mostly)

- Roaming partners
- Owners of legitimate handsets

A trust analysis

Who's trusted?

- Internal network, PSTN
- Legitimate handsets ~~ unreliable
- The crypto \rightsquigarrow mostly broken

Who's not? (mostly)

- Roaming partners
- Owners of legitimate handsets

The crypto (GSM)

• A3/A8: end-to-end authentication and key derivation

• A5/1, A5/2, A5/0: voice & control channel encryption

The crypto (GSM)

- A3/A8: end-to-end authentication and key derivation
 → breakable with 2¹⁷ chosen plaintexts (≈ 8 hours) [BGW98]
- A5/1, A5/2, A5/0: voice & control channel encryption

The crypto (GSM)

- A3/A8: end-to-end authentication and key derivation
 → breakable with 2¹⁷ chosen plaintexts (≈ 8 hours) [BGW98]
- A5/1, A5/2, A5/0: voice & control channel encryption
 ~> A5/0: no security
 - → A5/2: breakable in realtime [BGW99]
 - ~> A5/1: breakable in practice, with non-trivial effort [BSW00]

- Bypassing the crypto in GSM is not so easy
 - Same party handles both SIMs and Authentication Service

→ They got the key management right

- And they tend to be good at details like PIN management
- Some risks exist, though
 - Many providers put so much trust in the crypto that they didn't bother with a second line of defense
 - And there are some protocol attacks

Comparing the systems

Standard	Security	
	Anti-fraud	Privacy
Analog	Terrible	Terrible
GSM	Mediocre	Poor
US digital	Mediocre*	Bad

(*) Poor when digital scanners become prevalent, better if industry introduces strong keying.

Note. A digital cellphone is no panacea: they're often dual-mode and will fall back to analog outside of digital coverage areas.

Lessons for infrastructure analysis?

• Questions for security evaluation:

Whom do you trust?

What is your threat model?

How will bad guys be thinking?

- Public scrutiny works
 - Flaws found within days/months of public release of standards

→ public standards permit early debugging

Summary

- Think of your cellphone as a party line
 - Analog cellphone systems widely exploited
 - Digital cellphone systems have many weaknesses; not widely exploited today, but the future is unpredictable
- Technologically, fixes are not hard
 - But the political realities and the economics of deployment are big barriers
- Strong cellphone security is a long way off...