Clustering Data for the Docking@Home Project

By: Brenda Medina

Intern from University of Texas at El Paso(UTEP)
As part of the CRA-W DMP at the University of
Delaware (UDel)

- ***Overview**
- Purpose
- Program
 - Clustering algorithm
 - Implementation overview
- Limitations
- Parameters
 - Data
 - HIV protein
 - Ligands
- Results
 - Complex 1hvi
 - Complex 1hvj
- Future work
- Acknowledgments

Overview

- Why understanding protein-ligand interactions is important?
 - Development of new pharmaceutical drugs
 - Determining protein function
- Why simulate protein-ligand interactions?
 - Wet lab approach is expensive in terms of: people, money, resources, and time

Overview

Overview

- Problem with simulations:
 - Large sample of docked protein-ligand complexes
- Solution: uncover patterns through clustering

- Overview
- ***Purpose**
- Program
 - Clustering algorithm
 - Implementation overview
- Limitations
- Parameters
 - Data
 - HIV protein
 - Ligands
- Results
 - Complex 1hvi
 - Complex 1hvj
- Future work
- Acknowledgments

Purpose

- Clustering attempts to uncover the a correlation between the following:
 - The force field used and the docking convergence
 - This will aid in developing a method to automatically cluster ligands
 - The lowest energy and the root mean square deviation
 - This will aid in developing a method which automatically selects the ligand(s), conformation(s) and rotation(s), which minimizes protein-ligand complex energy

- Overview
- Purpose
- ***Program**
 - Clustering algorithm
 - Implementation overview
- Limitations
- Parameters
 - Data
 - HIV protein
 - Ligands
- Results
 - Complex 1hvi
 - Complex 1hvj
- Future work
- Acknowledgments

Program: Clustering algorithm

- Clustering method: K-Mean
 - 1. Randomly select K centroids
 - Compute distance from all data points to every centroid
 - 3. Assign cluster membership: minimize data point-centroid distance
 - 4. Repeat steps 2 and 3 until no data point switches clusters
- Distance: Root Mean Square Deviation (RMSD)

Program: Implementation overview

Calculate distances among all docking results in one complex

Apply clustering algorithm to each and every complex

Output results of clustering

- Overview
- Purpose
- Program
 - Clustering algorithm
 - Implementation overview
- **&Limitations**
- Parameters
 - Data
 - HIV protein
 - Ligands
- Results
 - Complex 1hvi
 - Complex 1hvj
- Future work
- Acknowledgments

Limitations

- Challenges of K-Mean:
 - Randomness
 - Calculating centroids
 - Choosing K
- Every clustering algorithm has challenges
- BUT... these challenges drive future work: accuracy improvement

- Overview
- Purpose
- Program
 - Clustering algorithm
 - Implementation overview
- Limitations
- ***Parameters**
 - Data
 - HIV protein
 - Ligands
- Results
 - Complex 1hvi
 - Complex 1hvj
- Future work
- Acknowledgments

Parameters: Data

- Analysis of 2 complexes: 1hvi, 1hvj
- Each complex with 300 docking results
- Tested k-Mean clustering with k=7
- Data obtained from volunteers across the world through the Docking@Home project

Parameters: HIV protein

Parameters: Ligands

- Overview
- Purpose
- Program
 - What it does
 - Implementation details
- Limitations
- Parameters
 - Data
 - HIV protein
 - Ligands

***Results**

- Complex 1hvi
- Complex 1hvj
- Future work
- Acknowledgments

Results: Complex 1hvi

Results: Complex 1hvj

- Overview
- Purpose
- Program
 - Clustering algorithm
 - Implementation overview
- Limitations
- Parameters
 - Data
 - HIV protein
 - Ligands
- Results
 - Complex 1hvi
 - Complex 1hvj
- **♦Future work**
- Acknowledgments

Future Work

- Compare accuracies when using different:
 - X values in the case of the K-Mean algorithm
 - > Types of distances e.g. maximum value distance
 - Methods of computing the centroids in the case of the K-Mean algorithm
 - Clustering methods
- Take into account force fields and energies when clustering as opposed to only complexes

Future Work

- Improve efficiency by calculating only the distances needed at the time of clustering instead of all distances between every data point
- End goal: Method to automatically select ligand(s) which minimize(s) protein-ligand complex energy

- Overview
- Purpose
- Program
 - Clustering algorithm
 - Implementation overview
- Limitations
- Parameters
 - Data
 - HIV protein
 - Ligands
- Results
 - Complex 1hvi
 - Complex 1hvj
- Future work
- Acknowledgments

Acknowledgments

- Dr. Michela Taufer
- Trilce Estrada
- CRA-W Distributed Mentorship program (CRA-W DMP)
- UDel
- Grant Funding:
 - NSF OCI #0506429, DAPLDS a Dynamically Adaptive Protein-Ligand Docking System based on Multi-Scale Modeling