
Optimization of Selection of Test Sets for Circuits

Olga Kuznetsova
Brown University Summer Research Student

University of Maryland, College Park
olga@umd.edu

Abstract
Generating a test set based on knowledge of the criticalities of all the faults in a given circuit
can yield good test coverage. Yet criticalities are costly to calculate. In this paper, a method is
proposed of minimizing the number of calculations of criticalities to as much as 12.5% of the
original number of criticality calculations while maintaining similar product quality.
Additionally, the test coverage for stuck-at faults is shown to apply to coverage of bridge faults
for the same circuit.

Introduction
Integrated circuits are used in every part of modern life. These small chips are manufactured
across the world for a huge variety of applications. These chips are relied on, and assumed to
not be faulty when acquired. Yet when one manufactures anything in large quantities, defects
often occur. The important thing is to catch them. Ideally, when it comes to defects in circuits,
every defect that could possibly occur in them would be targeted and tested deterministically.
Sadly, this would not be efficient, as there are too many possible faults that could possibly
occur. We could also try to apply all possible test patterns to exhaustively test circuits, but as
the number of possible patterns grows exponentially, this is also highly impractical. It is more
efficient, if a little less safe, to use only a small amount of the possible test patterns that would
most likely best detect the largest amount of the possible defects. The primary focus of this
study is to find ways of detecting critical defects, and defects that are not detected often while
refraining from calculating criticalities (importance of finding the defect) at each point. The
studies outlined below have yielded ways of reducing the number of calculations of
criticalities, while maintaining good coverage of all the simulated faults.

Relevant Terms
Before delving further into the description, some terms frequently used will be defined. Faults
are logical models of defects that predict how a defect will affect the functional behavior of the
circuit. For example, stuck-at faults are points where the circuit is fixed at either 1 or 0,
regardless of the input value to that point. A bridge fault is a short between a group of signals
(in this paper, two wires). A bridge fault can either be an OR bridge ('ORing' the two values of
the wires it connects for both of them), or and AND bridge (same but with 'ANDing'). Faults
should not be confused with ‘defects’, which are actual problems in a real-life circuit. Faults
are used to simulate defects, in order to better detect defects. Faults are inserted into working
circuits to see how to best detect them, and then the tests used to detect such faults are in
turn used to detect defects. A term often used in the paper is the 'criticality' of a fault. This
tries to capture the impact of a potential error on the user if a fault is not detected. The higher
the criticality, the more catastrophic or noticeable the error, and the more important it is to
detect the fault.

 1

Related Work
In the real world, circuits come with faults, which could be bridge, stuck-at, or something else,
so when they are tested for, they are all tested for together. When finding ways of best finding
such faults, simulations must be run in order to trace the best ways of finding random faults.
Since it is hard to make a general algorithm for all possible circuits, a specific circuit, color
converter is used in most of the work of the laboratory, although the algorithms designed
would work on all circuits. This is a giant circuit for which the criticalities of all stuck-at faults
are available, thereby allowing it to be easy to find how important the faults found are. In the
real world, determination of criticality is a very costly operation, and it is best to minimize the
number of points that criticality must be calculated for.
Previous work has shown that as a defect becomes harder to detect, the overlap that its
detection has with other defects gets smaller. [Dwor 04]. It has also been shown that random
patterns are inefficient for capturing critical faults, if no criticalities are initially known. [Dwor
07].
In a simple world, each fault would theoretically have a 50% chance of being discovered, as it
can either have a value of 1, or 0. When in a complex circuit, a single fault is tested for, it is
usually the case that many other faults randomly excited and therefore detected. This is
called a ‘fortuitous detection’, one that was not planned for. Such detections are many, and
add to the coverage of the circuit, but cannot be relied upon to cover all faults. It is best to
have multiple detections of each stuck-at fault, yielding different methods of excitation of and
larger coverage. A balance between purposeful excitation and random excitation needs to be
achieved. [Dwor 04].
Previous work has also shown that, with some minor modifications, AND-type, OR-type an
d4-way bridges are detected well by a good test-coverage vector-set for stuck-at faults. The
edits made to the detection vector set for stuck-at faults when detecting bridges will not
impact the previous detection of stuck-at faults. [Miya 05] A test that covers stuck-at faults can
be modified to increase coverage of non-feedback bridges by 9% without disrupting the stuck-
at fault coverage. [Miya 08].
This project aims to decrease the number of test sets and increase the test coverage of
previous studies. The main study that is noted is that of Yiwen Shi, a graduate student in the
laboratory. She created an algorithm for finding a list of the best vectors for each circuit based
on the criticality values. She ranked vectors based on their 'ELF Value' which is defined as
follows for each vector.

∑
=

=
n

i
iiallELF

0
crit*d

d is defined as either 1 or 0 depending on whether the given fault has been detected. n is the
number of possible faults for the entire circuit. The vectors are then ranked from highest to
lowest. Therefore, when looking for a test set of a certain size, the top 'X vectors are grabbed
from the list. This is a very good approach, and is takes approximately 56% of the time of a
full analysis. [Shi 08]

 2

Test set of size 500 versus master test set natural log plot

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8

ln (number of detections in master test set)

ln
(E

LF
al

l t
es

t s
et

 o
f s

iz
e

50
0

to
ta

ln
um

be
r

of
 d

et
ec

tio
ns

)

9

[Figure 1] ELFall Top 500 Vectors versus Master Test Set detections

Figure 1 shows the graph of the benchmark vector list of size 500, versus the master test set
(all vectors used). For the duration of this paper, graphs of natural logs of the number of
detections will be used. This is a useful visualization because, ideally, there would be a 1-1
correlation between the number of detections of each fault for the old and the improved vector
set. This ideal case would be represented by a slope of 1 in the graph, and an R2 value of 1
(meaning densely packed data points).
Yet criticality is a very costly operation, as mentioned previously, so the goal of this study is to
decrease the number of criticalities that have to be calculated while maintaining the high
coverage of the vector sets. This study was used as the 'benchmark' for the current project. It
is unknown whether the vector lists produced are the most efficient, but they are a good
approximation of the 'best coverage' scenario. This study seeks to find a test set that will
require less calculations of criticalities, and similar, if not better, test coverage.

Approach

Fastscan
The main commercial tool that is used in the lab for analysis of circuits is FastScan by
Mentor Graphics. FastScan is a program that allows one to load a circuit in and conduct
simulations on it. Different types of faults can be added, and statistics can be generated
about their detection. As FastScan is a commercial tool, it does have its limitations, forcing
the data to be analyzed before and after the actual run resulting in a lot of pre- and post-
processing. Another limitation is the amount of time it takes to run any FastScan program—
any script needs to be tested on a smaller circuit before embarking on a 'colorconverter

 3

run'. FastScan is also poorly documented resulting in difficulties in having to re-program
tasks that the program could probably accomplish.

Preliminary Approaches
The first approach taken to calculating the weight of the vectors was to give more weight to
those vectors that detect vectors that are detected a small number of times. This was
generally done by taking each fault that was detected less than a certain amount of times,
and finding a vector that detected it, adding that vector to the list.

One vector for each of faults detected less than 15 times versus ELF using
all faults and only criticalities

y = 1.0138x - 0.0546
R2 = 0.977

-1

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

ln of num detections of faults detected less than 15 times vector set

ln
(n

um
 d

et
ec

tio
ns

 E
LF

al
l v

ec
to

r
se

t)

[Figure 2] Vector set of 464 vectors and their performance compared to benchmark

 4

One vector for each of faults detected less than 15 times versus
ELFall

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

0.0018

0 10000 20000 30000 40000

fault number

cr
iti

ca
lit

y Faults detected less than 15
times
ELFall

[Figure 3] Criticalities of faults not detected for test set size 464

As can be noted in the above two graphs, the correlation with the benchmark is quite good
for this data set. This data set involved 464 vectors where each vector detected at least
one fault that had less than or equal to 15 detections from the master test set. There are
some faults with non-negligible criticalities that are not detected by the new vector set,
even through in general it has comparable detections of each fault as the benchmark set.
It was putting too much stress upon small vector, which only detects a couple of faults,
rather than grabbing first the vectors that detect the largest amounts of faults and are more
efficient to run. This approach also ignored criticalities. It is interesting how a test that
doesn’t include any calculations of criticalities could produce such amiable results. This
shouldn’t be relied upon, as much of the detections in this case were due to ‘fortuitous
detection’, rather than aiming to detect critical faults. It just happens that most faults that
have high criticality also have many vectors that detect them for this circuit. This could not
always be the case, and this should be provided for. Something different needed to be
done.

Criticalities/ELF Values
The ELFall value that Shi used in her study was edited to create the vector set used for this
study. The ELFall value was first stated to be, for each vector, the sum of all of the
criticalities times the number of detections for each vector. The new ELF value includes a
new variable: the number of detections. It combines concentration on less detected faults
with concentrating on critical faults.

 5

i

n

i
iinew dELF *ionsnum_detect*crit

0
∑
=

=

Once again, d is either 1 or 0 depending on whether the fault is detected by the given
vector. The vectors were ranked based on their ELFnew value same as before. A couple of
problems were found with this approach. First, it still involved calculation of all of the
criticality values, not improving on the number of calculations needed in previous study [Shi
08]. Second, it placed more value on the faults that have more detections, rather than
those that are detected less.
The solution to this problem was a modification of this formula.

∑
=

−=
n

i
ifinalELF

0
ii)ionsnum_detectMAX_DET(*crit * d

The only faults added in this equation are ones that have less than k total detection.
MAX_DET is defined as the maximum number of detections of any fault for any vector in
the set. The faults are sorted in order of number of detections for each vector to make it
simpler. The results of this formula were taken for several values on ‘k’ as the ‘best fit’ for
the new modifications. This also minimizes the number of faults that the criticalities have to
be known for. These results then needed to be tested again to see how well they detected
bridge faults. The following graphs represent a selection of comparisons between the
benchmark vector sets of versus the new vector sets of the same length.

ELF including faults detected less than 500 times for top 500
vectors

y = 1.0242x - 0.1214
R2 = 0.9613

-1

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

ln(faults detected using top 500 vectors ranked by ELFfinal calculated with
faults under 500 detection)

ln
(n

um
 d

et
ec

te
di

on
s

us
in

g
to

p
50

0
ve

ct
or

s
ra

nk
ed

 b
y

EL
Fa

ll)

[Figure 4] Graph of natural log of previous data set versus the new data set

 6

Only showing faults with less than 50 original detections from
ELF including faults detected less than 500 times for top 500

vectors versus versus benchmark

y = 0.472x + 0.5641
R2 = 0.2675

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

ln(faults detected using top 500 vectors ranked by ELFfinal calculated with
faults under 500 detection)

ln
(n

um
 d

et
ec

tio
ns

 u
si

ng
 to

p
50

0
ve

ct
or

s
ra

nk
ed

 b
y

EL
Fa

ll
va

lu
e)

=

[Figure 5] Zoom around origin from Figure4

Criticalities of faults that were never detected

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0 10000 20000 30000 40000

Fault number

C
rit

ic
al

ity

Top 500 vectors dataset
using ELFfinal for faults
detected less than 500
times

Top 500 vectors from
dataset using ELFall
value

[Figure 6] Graph of only criticalities of faults not detected for dataset used if Figure 4

 7

In the case of k = 500, 8354 faults’ criticalities need to be calculated out of about 65000
which is about 12.5 %. A significant improvement. The correlation between the new vector
set and the benchmark is good with a slope of 1.02. The R2(correlation between points)
value is close to 1, and so it appears like we have a good fit. The correlation between the
two datasets is less favorable when examined only around the origin as in Figure 5 with
little if any correlation.
It can be seen in Figure 6 that there are some faults that are not detected at all that have
non-negligible criticalities, and that the previous data set scores marginally better than the
new one. It should be noted that these criticalities are very small compared to the
maximum criticality of 3.298 and the mean criticality of .101 for all faults compared to the
highest point of the graph being 0.001557. In the previous studies, faults with criticalities
less than .001 were neglected, so this graph would only show one undetected fault by the
new test set—still a significant step.

ELF including faults detected less than 250 times for top 250
vectors

y = 1.0431x - 0.1705
R2 = 0.9386

-1

0

1

2

3

4

5

6

0 1 2 3 4 5

ln(faults detected using top 250 vectors ranked by ELFfinal calculated with
faults under 250 detection)

ln
(n

um
 d

et
ec

te
di

on
s

us
in

g
to

p
25

0
ve

ct
or

s
ra

nk
ed

 b
y

EL
Fa

ll)

6

[Figure 7] Top 250 vectors from ELFfinal using faults with less than 250 detections against benchmark

 8

Criticalities of faults that were never detected

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0 10000 20000 30000 40000

Fault number

C
rit

ic
al

ity

Top 250 vectors dataset
using ELFfinal for faults
detected less than 250
times

Top 250 vectors from
dataset using ELFall
value

[Figure 8] Criticalities of faults not detected for Figure 7’s data

Figures 7 and 8 show another example of a different combination for calculating ELFfinal
vector sets. The results produced are similar to those of Figure 4-6. It is not specified which
combination of vector set size and number of detections to include in ELFfinal calculations
yields the optimal result, as this could different for different circuits.

Bridges
In order to see if the vector set found through examining stuck-at faults and their criticalities
is indeed good at catching untargeted defects, bridge faults needed to be examined as
surrogates for untargeted defects. The reason for this is that bridge-faults are a very likely
occurrence in an actual circuit, but most test generation tools do not explicitly model and
generate tests for them. Thus, they must be detected fortuitously. For this reason, the
same vector set that detects the stuck-at faults needs to be able to detect bridges. Stuck-at
faults are more straightforward than bridges; with stuck-at faults every site of the circuit
may be stuck at either 1 or 0. Bridges, on the other hand, involve multiple sites. The
number of possible bridges grows as n2 where n is the total number of sites. This is
generally too large to simulate quickly, especially for a large circuit. Thus, we choose a
random sample of all possible bridges. However, for our simulations, we also need to
verify that the sampled bridges are non-feedback, so they do not cause oscillations. In
addition, feedback bridges have previously been shown to be relatively easy to detect.
Thus, we are less concerned that they will become test escapes. We also need to ensure
that our chosen bridges cover a range of the circuit so that the circuit can be well
represented.
The first approach I took to finding the bridges was to take every possible combination of

 9

wires inside the circuit and connect them through the FastScan bridge fault option. It took
long enough to generate that file, and it turned out to be about 10 GB in size—completely
unloadable and unreasonable. I attempted to load this in pieces before realizing that not all
the faults are non-feedback. Then came the question of actually finding the non-feedback
edges.
The solution I employed was modifying a C++ program that finds all wires within a certain
distance of each other. By definition, a non-feedback bridge would occur between a set of
wires that are not within each other’s input/output logic cones. In other words, the distance
between them would be infinite because in the good circuit, they are in no way connected.
The script was run to find all wires within any non-infinite distance of each other, and then
for each wire, to grab all of the wires that are not within each others' list of connecting
wires. There are some limitations to this approach as bridge faults generally occur between
wires that are close to each other physically in the circuit. This approach generally finds
wires on opposite ends of the circuit that would less likely have a short between them than
those that are adjacent. Either way, the list of wire combinations produced is too large, so
only a fraction of the bridges can be grabbed. I grabbed the first several combinations
found for each wire, which is a rather simple approach, and could be improved upon in the
future.
Once the bridges were acquired and formatted, they were combined with previous
FastScan and stuck-at-fault data. Each of the wires of the circuit were mapped to the pins
that they connect, and thereby the faults they are detected by. FastScan was run to find the
value at each of the stuck-at-fault sites during the run of a good simulation with all of the
vectors that could possibly be used for testing.

[Figure 9] Explanation of detection of OR bridge by knowledge of detection of stuck-at faults for the

given area.

Figure 9 demonstrates how an OR bridge would be detected. The OR bridge (marked in
green) would be detected if it is detected that A is stuck at 1, B must be equal to 1. If it is
known whether a certain vector detects each type of stuck-at-fault, and what the value is at
each wire during a ‘good simulation’ run of each of the vectors, it can be known whether
any bridge would be detected.

 10

The bridges found were simulated by the following general algorithm:

foreach vector
foreach bridge from a --> b

// and bridge
if a is stuck at 1 and b is 0 at that point

and bridge is detected
 if b is stuck at 1 and a is 0 at that point
 and bridge is detected
 // or bridge
 if b is stuck at 1 and a is 1 at that point
 or bridge is detected
 if a is stuck at 1 and b is 1 at that point
 or bridge is detected

This script produces a file for each of the possible bridges, and whether or not each vector
detects them. From there, the vector list that was generated from the stuck-at faults can be
used to find out how well the bridge faults were detected using the vectors that best detect
stuck-at-faults.

 Master Bridge Detection

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

d1
_4

__
d1

_4
__

o.
tx

t

nx
13

97
6_

nx
10

27
2_

o.
tx

t

nx
10

89
1_

nx
10

47
4_

o.
tx

t

nx
12

51
7_

nx
10

30
4_

o.
tx

t

nx
12

92
0_

d3
_4

__
o.

tx
t

nx
10

73
5_

nx
10

46
3_

o.
tx

t

nx
10

64
2_

nx
10

89
1_

o.
tx

t

nx
10

89
1_

nx
10

11
3_

o.
tx

t

nx
10

72
2_

nx
10

80
5_

o.
tx

t

nx
10

98
5_

nx
10

55
7_

o.
tx

t

nx
11

30
_n

x1
08

13
_o

.tx
t

nx
12

50
9_

nx
10

64
5_

o.
tx

t

d3
_4

__
nx

10
10

9_
a.

tx
t

nx
10

42
8_

d2
_4

__
a.

tx
t

nx
10

63
7_

nx
10

29
4_

a.
tx

t

nx
10

79
2_

nx
10

47
4_

a.
tx

t

nx
10

99
7_

nx
10

64
2_

a.
tx

t

nx
11

34
1_

nx
10

74
3_

a.
tx

t

nx
11

68
_n

x1
01

01
_a

.tx
t

nx
11

92
1_

nx
10

38
5_

a.
tx

t

nx
12

51
3_

nx
10

55
7_

a.
tx

t

nx
12

91
5_

nx
10

65
7_

a.
tx

t

nx
13

56
7_

nx
10

80
9_

a.
tx

t

nx
14

14
7_

nx
10

24
8_

a.
tx

t

fault name

nu
m

 d
et

ec
tio

ns

[Figure 10] Master Graph for Bridge Detection

 11

Top 500 of the ELF vectors of faults detected less
than 500 times detecting bridge faults

0

100

200

300

400

500

600

1 1806 3611 5416 7221 9026 10831 12636 14441 16246 18051

Fault num

Nu
m

 d
et

ec
tio

ns

[Figure 11] Bridge detection using top 500 of the less than 500 detections ELF vector set

As seen in Figure 10, the ELF vectors detect bridge faults very well. There is only two
bridges that are not detected, one of which is undetectable (is not detected even by the
master test set). Similar results were yielded by using different ELFfinal vector sets, though
it was found that in general, the more faults are included in the calculation of the ELFfinal
value, the less bridge faults are missed.

Ideas for Future Work
Since it was not possible to conduct the simulation with all possible non-feedback bridges,
only a small number of bridges were used to create the analysis. The bridges used were
grabbed from the list of the first bridges found, and were not randomized. It is possible that
the result would be different if a more random bridge-selection took place, but the location of
the bridges required times that was not available in the current study. It would also be good to
find the bridges that are within a certain distance, physically, of each other in the circuit. They
would still be non-feedback, but there would be higher probability of them occurring as the
wires could actually short.
One limitation of the stuck-at fault modeling is that many of the faults are looked at twice. The
way that they faults were first assigned was to make each input and each output of each pin
be stuck at 0 once at stuck at 1 once. This causes many wires to be reported as separate
faults twice. This causes a bias in results, as they are counted twice in the analysis,
compared to starting and ending wires (that go from only one point) are only counted once. It
would be best to re-do the tests on a new set of stuck-at-faults that do not have repetitions.
It would also be beneficial to look at the particular stuck-out faults, and how they correspond
to the bridges that are detected and not detected by any particular vector. The bridges that

 12

are not detected could also be added to the FastScan run, manually, and it could be seen
how much of an impact they make on other parts of the circuit. This would yield criticality
numbers for the bridge faults, and could prompt a similar analysis of the bridge faults and
vectors as was conducted with the stuck-at faults.
The preliminary assumption of this study was that the Shi 2008 vector set was the optimal
pattern list for the detection of faults. It has been shown to be very similar to the new ELFfinal
pattern list, but is different. It is also very close to the pattern list generated by only using
number of detections (and no criticalities). It is important for future studies to know which way
of determining pattern lists is more accurate. Since the Shi 2008 study only uses criticalities,
and the new study uses both criticalities and number of detections, it would be beneficial to
know what is more important in determining the usefulness of a vector: number of detections
or criticality.

Conclusion
This study provided a wonderful improvement upon the Shi 2008 study. It showed that the
ELF calculation, which was proved to provide a good way of ranking test patterns, can be
improved by minimizing the number of criticalities that need to be calculated for each circuit.
In the main example used for this study, the number of criticalities needed to be calculated
was decreased to 12.5% of the original. The vector sets generated were also shown to be a
good detection set for bridge faults, as a model for the detection of un-programmable possible
faults. There are many ways that this study can be approached in the future, as outlined in the
previous section, but for now it has shown that the direction that the Shi 2008 study went is
fortuitous but could also be improved upon.

Acknowledgments
This research was performed at Brown University in Rhode Island as part of the Integrated
Circuit and Computing Laboratory in the Electrical Engineering Department. Research was
conducted under Professor Jennifer Dworak. Special thanks to the other members of the lab:
Yiwen Shi, Elif Alpaslan, Stella Hu, Monica Noring, and Jom Kantapon. The author was
sponsored by the Committee on the Status of Women in Computing Research (CRA-W)
through their Distributed Mentor (DMP) program.

References

[Dwor 04] J. Dworak, B. Cobb, J. Wingfield, M. R. Mercer, “Balanced Exitation and Its Effect
on the Fortuitous Detection of Dynamic Defects,” p. 21066, Design, Automation and Test in
Europe Conference and Exhibition Volume II (DATE’04), 2004.

[Dwor 07] J. Dworak “Which Defects Are Most Critical? Optimizing Test Sets to Minimize Failures due
to Test Escapes,” Proceedings of the 2007 IEEE International Test Symposium (ITC ’07), Santa Clara,
California, October 23-25, 2007.

[Miya 05] K. Miyase, K. Terashima, S. Kajihara, X. Wen, S.M. Reddy, "On Improving Defect
Coverage of Stuck-at Fault Tests," in Proc. of Asian Test Symposium, pp.216–223, Dec.
2005.

[Miya 08] K. Miyase, K. Terashima, S. Kajihara, X. Wen, S.M. Reddy, “On Detection of Bridge
Defects with Stuck-At Tests,” IEICE Trans. Inf. & Sysm. Vols. E91-D. NO.3 March 2008.

 13

p683-689. 2008.

[Shi 08] Y. Shi, DiPalma Kellie, J. Dworak. “Efficient Determination of Fault Criticality for
Manufacturing Test Set Optimization” accepted for publication at the 23rd IEEE International
Symposium on Defect and Fault Tolerance in VLSI Systems, DFT 2008., Oct. 1-3, 2008.

 14

	Optimization of Selection of Test Sets for Circuits
	
	Abstract
	Introduction
	Relevant Terms
	Related Work
	Approach
	Fastscan
	Preliminary Approaches
	Criticalities/ELF Values
	Bridges

	Ideas for Future Work
	Conclusion
	Acknowledgments
	References

