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I. Introduction 

A Field Programmable Gate Array (FPGA) is a prefabricated integrated circuit chip with 

Combinational Logic Blocks (CLBs) ordered into a grid configuration. (Figure 1) The FPGA 

chip has no manufactured function, instead it is ‘programmable’; the user can create a circuit 

design and change the configuration of the FPGA chip to that of the design. Opposed to 

traditional integrated circuit chips, FPGAs can be programmed with numerous designs many 

number of times. This is what makes FPGAs useful, they allow for practical testing of new 

circuit chips without manufacturing the chip.1  

 

Figure 1 Example Xilinx FPGA chip diagram 

                                                 
1 To learn more about FPGA and other Programmable Logic Devices visit: 
http://en.wikipedia.org/wiki/Programmable_logic_device 
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An FPGA chip can be evaluated by different metrics: chip reconfiguration time, chip 

performance time, and chip resources available. In this project we take a look at chip 

configuration time vs. chip performance time. FPGA chips come in different flavors; some chips 

only allow reconfiguration of the entire chip at a time and others allow partial reconfiguration, 

reconfiguration of several columns or rows at a time. The chip used in this project is a Xilinx 

Virtex 2 XCV2000E chip. It is partially reconfigurable at 2 columns of CLBs at a time. Columns 

can also be reconfigured while the rest of the chip is running.  

There are several steps to reconfiguring an FPGA chip with an application or design. A 

Hardware Description Language (HDL) is used to write a program that describes the application. 

Then a simulation program checks the code for logical and syntax errors. Next a synthesis tool 

emulates the chip and tells the user if the application would work at a hardware level; it maps the 

application to logic components such as AND and OR gates. At this level, the tool can only say 

if the synthesis can run or not based on chip-technology independent rules. The next level tools 

are the place and route (P&R) tools. Here the file produced by the synthesis tool is mapped to a 

particular chip, so it is technology dependant. Errors at this level include setup and hold timing 

violations, and if clock period and physical constraints cannot be met, among others. The P&R 

tools also return a very good approximation of the timing delays, clock period and other details 

about the application at chip level. The last step is to download the application onto the chip 

itself. The chip usually comes with software that does this last step. The simulation software 

used is ModelSim SE 5.7g and the synthesis tool is Synplicity Pro 7.6.1. The project level 

software used was Xilinx Project Navigator 6.2.03i. Project Navigator allows the user to create 

HDL code, simulate, synthesize, and P&R all from one application.  
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Application performance on chip depends on placement and routing, and P&R depends on 

several constraints: timing, physical and I/O pin. A timing constraint restricts the P&R tools to a 

certain clock period, so the tools will try to minimize any delays inside the application on the 

chip. A physical constraint allows the application to be placed on only a certain part of the chip, 

for example ten most left columns on chip. Lastly I/O pin constraint is self-explanatory, the P&R 

tools are restricted to only using certain I/O pins that the user specifies. Each of these constraints 

affects the way the application is routed and hence the performance, as the delays increases the 

chip performance decreases and vice-versa.  

For the purposes of this project, the P&R level provides an accurate enough estimation of the 

various chip performances of an application that it is possible and practical to forgo the actual 

writing to the chip. So all the data provided in this report can be assumed to come from P&R.  

 

II. Project Description 

For this project we are concerned with chip performance and chip configuration time. Chip 

performance is represented by application frequency, how fast the application can run on chip in 

clock cycles per second. Chip configuration time is represented by the physical configuration of 

the application on the chip. Since the Virtex 2 is partially reconfigurable, it takes a few 

milliseconds to reconfigure 2 CLB columns at once.  So the number of CLB columns an 

application occupies can be substituted as a more practical representation of chip reconfiguration 

time. The more CLB columns an application takes, the more time it takes to be reconfigured.  

For this project I synthesize several applications with physical constraints and observe the 

relevant output, which is the application clock period. The smallest clock period returned by the 

P&R tool for the application is also the maximum clock frequency for that application. 
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There are two parts to this project. The first part constrains individual applications several 

times to get a relationship between physical constraint (reconfiguration time) and performance 

time (clock frequency). In addition, I synthesize a number of different applications to find their 

maximum performance time and minimum physical size. Second, I take a look at two real world 

applications, JPEG encoder and decoder, break down their components and synthesize the 

individual components to find their maximum frequency and their minimum physical size. In the 

next section, I will walk through an example application from design to routing.  

 

III. Implementation Example: 8 x 8 Matrix Multiplier 

The matrix multiplier designed is a finite state machine with two 8 x 8 input matrices and one 

8 x 8 output resultant matrix. There were several options in designing this application: use Block 

RAMs (BRAMs) to store the inputs, use a large number of I/O pins to gain access to all the 

inputs, use neither BRAMs nor a large number of I/O pins. Because I wanted to test the 

application independent of other chip resources such as BRAMs, the first option was ruled out. 

The third option would require a large amount of clock cycles to read in all the data required to 

carry out the computations and was ruled out. That left the second option; even though there is a 

heavy emphasis on access to I/O pins, this effect becomes background when comparing this 

application at different physical constraints.  

The block diagram in Figure 2 shows the specifics of this application. By having 8 

multipliers work in parallel, the number of clock cycles is reduced. The individual components 

are divided into four parts that are treated like four stages in a pipeline. Each stage is registered, 

which allows for an increase in clock frequency.  
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To start, the settings for Project Navigator and Synthesis are given in Table 1. The Project 

Navigator settings are used when creating a new project. Once a project has been created, the 

synthesis settings can be found in the Project Navigator processes window. The menu for the 

settings can be accessed thru a right click on the synthesize menu and choosing properties. To 

create a constraint file for the project, the option can be found in the Project Navigator processes 

window, under the User Constraints menu. Project Navigator provides a convenient graphical 

user interface for creating constraints. 

The simulation stage is where the application is tested for syntax and logic errors. Here is 

where the test bench comes in. The test bench provides clock and input signals to drive the 

application and by observing the output I can see if the application works correctly. Because this 

is an iterative process and self explanatory, I will move on to the synthesis stage. The synthesis 

stage is small in that the user just runs the synthesis program and makes sure there are no errors 

or warnings. The longest part next to simulation is P&R. I created a constraint file that specified 

a physical constraint to the application as well as a clock period constraint. The purpose of the 

physical constraint was to limit the number of CLB columns the application occupied as well as 

force the P&R tools to meet the clock period. Usually the first try in constraining is a best guess. 

Using a binary search algorithm, re-synthesizing several times with different clock periods 

allows me to find the minimum clock period for that physical constraint. The following is an 

example of the steps to find the minimum clock frequency at a physical constraint of 14 CLB 

columns: 

1. First guess minimum clock period: 5ns – P&R tools returns 6.9 ns 

2. Second guess minimum clock period: 7 ns – P&R tools return 6.49 ns 

3. etc. 
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Figure 2 Matrix Multiplier Block Diagram 
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is also important to compare it to the application unconstrained, which means that 0 columns of 

CLB are constrained and the P&R tools has the entire chip to place the application.   

Table 1 Project Navigator and Synthesis Options 
Project Navigator Options 

Device Family Virtex2 
Device xc2v2000 

Package ff896 
Speed Grade  -6 

Top level Module Type HDL 
Synthesis Tool Synplify Pro(VHDL/Verilog) 

Simulator ModelSim 
Generated Simulation Language VHDL 

 

Synthesis Options 
Symbolic FSM Compiler Check 

Resource Sharing Check 
Frequency 0 

Number of Critical Paths 0 
Number of Start/End Points 0 

Write Mapped Verilog Netlist Not Checked 
Write Mapped VHDL Netlist Not Checked 
Write Vendor Constraint File Check 

VHDL Specific Options 
Default Enum Encoding Goal Default 

Push Tristates across Process/Block 
Boundaries Check 

Verilog Specific Options 
Verilog 2001 Check 

Push Tristates across Process/Block 
Boundaries Check 

Device Option 
Use FSM Explorer Data Check 

Modular Flow Not Checked 
Retiming Not Checked 
Pipelining Checked 

Disable I/O Insertion Not Checked 
Fanout Guide 100 

Constraint File Options ( * User specified) 
Constraint File Name constraint.ucf * 
Add File to Project Check 
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IV. Experimental Data 

The majority of the applications here, with exception to the matrix multiplier, were generated 

by Xilinx CORE Generator and they are the Intellectual Property of Xilinx. Three applications 

will be examined in detail in this section: Matrix Multiplier, Fast Fourier Transform (FFT), and 

2-D Discrete Cosine Transform (2DCT). At the end of this report Table 7 has a description from 

CORE Generator for each application used.  

The metrics used here are clock frequency, CLB columns occupied by the application, and 

the delays from routing. There are two kinds of delays that are relevant here, maximum pin delay 

and average connection delay on the worst 10 nets. The maximum pin delay is the delay from 

where the application is on the chip to the farthest I/O pin. The worst 10 net delay is the average 

routing delay inside the application itself. I will sometimes use the words ‘inter’ and ‘intra’ to 

refer to pin and net delay respectively. This is because pin delay is delay outside of the 

application and the worst 10 net delay is the delay inside the application.   

A. Matrix Multiplier 

When the matrix multiplier is constrained to less than half of the chip, its frequency is about 

17 KHz less than the maximum, which is when it is unconstrained. (Figure 3) The reason for this 

discrepancy, where the maximum frequency is relatively unchanging and then changes very 

suddenly, becomes obvious when looking at the layout of the application. In Figure 5, the 

application is very focused inside the constraints. In Figure 6, in the unconstrained layout, the 

application is spread out in a ring configuration close to the outer edges of the chip. This is 

directly related to the design decision made to use I/O pins instead of BRAMs. Because there are 

so many I/O pins, the delay between the I/O pins and the location of the application becomes 

significant, and in an attempt to reduce this delay the P&R tools place each part of the 
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application close to the set of I/O pins it needs access tools. (Figure 4) This explains the dramatic 

increase in clock frequency as well as the decrease in maximum pin delay. 
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Figure 3 Matrix Multiplier Clock Frequency vs. CLB Columns 
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Figure 4 Matrix Multiplier Delays and Clock Period 
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Figure 5 Matrix Multiplier constrained at 12 columns Figure 6 Matrix Multiplier unconstrained 

 

Table 2 Matrix Multiplier Data 

 Physical Constraint (Number of CLB Columns) 

 10 12 14 16 Whole Chip 

Minimum Clock 
Period (s) 6.466E-09 6.476E-09 6.496E-09 6.496E-09 5.930E-09 

Maximum Clock 
Frequency (Hz) 1.547E+08 1.544E+08 1.539E+08 1.539E+08 1.686E+08 

Maximum Pin 
Delay (s) 4.235E-09 4.174E-09 3.938E-09 4.120E-09 3.787E-09 

Worst 10 Net 
Delays (s) 3.567E-09 3.692E-09 3.406E-09 3.470E-09 3.396E-09 

 

B. Fast Fourier Transform 

From Figure 7 it is obvious that the most efficient configuration in terms of clock frequency 

is when the FFT module is placed within 20 CLB columns on the FPGA chip. It follows that 
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when the constraint is more relaxed that the P&R tools should continue to place the module 

within the 20 columns in order to get maximum clock frequency, but instead the tools tend to 

place the module throughout the constraint space. The screen shots of the application constrained 

at 20 columns as well as unconstrained are shown in Figures 9 and 10. Also as the period 

decreases, the delays decrease as well. (Figure 8) 
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Figure 7 FFT Clock Frequency vs. CLB Columns 
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FFT Delays and Clock Period
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Figure 8 FFT Delays and Clock Period 

 
 
 
 
 

Table 3 Fast Fourier Transform Data 

 Physical Constraint (Number of CLB columns) 

 16 20 24 28 32 Whole Chip 

Minimum Clock 
Period (s) 1.053E-08 7.214E-09 8.276E-09 8.276E-09 8.170E-09 8.365E-09 

Maximum 
Clock 

Frequency(Hz) 
9.501E+07 1.386E+08 1.208E+08 1.208E+08 1.224E+08 1.195E+08 

Maximum Pin 
Delay(s) 6.711E-09 5.545E-09 6.227E-09 5.397E-09 5.864E-09 5.540E-09 

Worst 10 Net 
Delay(s) 5.617E-09 4.736E-09 5.404E-09 4.778E-09 5.067E-09 4.776E-09 
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Figure 9 FFT constrained at 20 columns  Figure 10 FFT unconstrained 

 
C. 2-D Discrete Cosine Transform 

The P&R tools do a better job with the 2DCT application. All of the constraints, with the 

exception of the two on either end of Figure 11, result in a maximum clock frequency of 

approximately 160 MHz. It appears that the P&R tools are not efficient when given too much 

restriction or too little restriction.  

The delays in Figure 12 follow the clock period. As the clock period increases, inter and intra 

delays increase. The odd data from this set is when the application is unconstrained. The clock 

period increases slightly from the maximum 12 column constrain, but the delays increase much 

more than the 12 column constrain. This is probably explained by application spread out fully 

across the chip, instead of clustered closer to cut down the intra delay. The most efficient 

configuration with the least amount of delay and best clock frequency is shown in Figure 13. 

Opposite of it is the configuration in Figure 14; it takes up the most space and is the least 

efficient, with the most delay.  
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Figure 11 2-D Discrete Cosine Transform Clock Frequency vs. CLB Columns 
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Figure 12 2-D Discrete Cosine Transform Delays and Clock Period 

 
 



Reconfiguration Overhead in Dynamic Task-Based Implementation on FPGAs - Nagaraj 
 

 
17 

Table 4 2-D Discrete Cosine Transform Data 

 Physical Constraint (Number of CLB Columns) 

CLB Columns 12 16 20 24 28 Whole Chip 

Minimum 
Clock Period 

(s) 
7.169E-09 6.349E-09 6.197E-09 6.286E-09 6.163E-09 7.457E-09 

Maximum 
Clock 

Frequency 
(Hz) 

1.395E+08 1.575E+08 1.614E+08 1.591E+08 1.623E+08 1.341E+08 

Maximum Pin 
Delay 4.798E-09 4.208E-09 4.163E-09 4.088E-09 3.707E-09 6.367E-09 

Worst 10 Net 
Delays 3.667E-09 3.420E-09 3.373E-09 3.295E-09 3.280E-09 5.711E-09 

 

   
Figure 13 2DCT constrained at 28 columns Figure 14 2DCT unconstrained 

 

D. Different Applications and Their Performance 

There were several applications that I found the maximum clock frequency for while 

constrained with the minimum number of CLB columns. These applications and their 
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corresponding data are listed in Table 5. In order to compare applications in terms of maximum 

frequencies, this table does not provide enough data, so included in Figures 17 - 28 are screen 

captures of each application on chip with minimum CLB column constraints. By looking at the 

spread of the application, a better comparison can be made.  

The relative maximum frequencies can be estimated just from looking at the screen captures. 

For example, by the packed density of the FFT application in Figure 18, I can estimate that it will 

have one of the smallest maximum frequencies. (Figure 15) This is because the frequency is the 

inverse of the clock period, and in such a packed configuration, the clock period has to be large 

enough to allow for all the delays from the increased routing. By the relative smallness in size of 

the Cascaded Comb Filter (Figure 25) or the light density of the 1-D Discrete Cosine Transform 

(Figure 24) I can estimate they will have large maximum frequencies compared to the rest of the 

applications. They have very small to almost no routing delays hence the clock cycle can be very 

small. On a side note, the Sine/Cosine Look Up Table (Figure 27) is so small that it doesn’t have 

a clock signal because the routing delays are insignificant and can run at any frequency.  
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Figure 15 Multiple Applications Maximum Frequency 
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Multiple Applications Delays 
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Figure 16 Multiple Applications Delays 

Table 5 Application Performance 

 
Minimum 

Number of 
CLB columns 

Minimum 
Clock Period 

Maximum 
Clock 

Frequency 
Max Pin Delay Worst 10 net 

Delay 

FFT 256 20 7.571E-09 1.321E+08 5.228E-09 3.702E-09 

FFT 16 1.053E-08 9.501E+07 6.711E-09 5.617E-09 

2-D Disc. Cosine 
Transform 14 6.923E-09 1.444E+08 4.040E-09 3.382E-09 

FFT 1024 12 9.312E-09 1.074E+08 5.462E-09 4.724E-09 

Matrix Multiplier 10 6.466E-09 1.547E+08 4.235E-09 3.567E-09 

CORDIC 4 8.453E-09 1.183E+08 2.876E-09 2.288E-09 

Digital Down Converter 4 8.373E-09 1.194E+08 3.108E-09 2.377E-09 

1-D Disc. Cosine 
Transform 2 4.857E-09 2.059E+08 2.835E-09 2.360E-09 

Cascaded Int. Comb 
Filter 2 3.380E-09 2.959E+08 1.461E-09 1.009E-09 

Multiply Accumulator 2 5.443E-09 1.837E+08 3.060E-09 2.388E-09 
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Sine/Cosine Look Up 
Table 2 0.000E+00 0.000E+00 1.677E-09 1.120E-09 

Direct Digital 
Synthesizer 2 4.532E-09 2.207E+08 1.810E-09 1.233E-09 

 

  
Figure 17 FFT 256 constrained at 20 columns Figure 18 FFT constrained at 16 columns 

 

  
Figure 19 2DCT constrained at 14 columns Figure 20 FFT 1024 constrained at 12 columns 
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Figure 21 Matrix Multiplier constrained at 10 columns Figure 22 CORDIC constrained at 4 columns 

 
 
 
 
 

  
Figure 23 DDConverter constrained at 4 columns Figure 24 1DCT constrained at 2 columns 
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Figure 25 CCFilter constrained at 2 columns Figure 26 Mult. Acc. constrained at 2 columns 

 
 
 
 
 

  
Figure 27 SinCosLUT constrained at 2 columns Figure 28 DDSynth. constrained at 2 columns 
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V. Real World Application: JPEG 

A more practical example of FPGA applications is JPEG encoding and decoding. The Joint 

Photographic Experts Group (JPEG) image compression takes several steps. To encode an image 

in JPEG, the image has to be coded and then compressed. (Figure 29) To decode a compressed 

image from JPEG, the image has to be decompressed and decoded. (Figure 30)  

The modules that I will look at are the three in the middle: the color changing module, the 

2DCT, the quantize and each of their inverses. The data for the modules is given in Table 6. 

There is a nice symmetry between the encoder and decoder, not just in structure but also in clock 

frequencies and delays. 

 

  

Figure 29 JPEG encoding steps Figure 30 JPEG decoding steps.   
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JPEG Application Maximum Frequencies
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Figure 31 JPEG Applications Maximum Frequencies 
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Figure 32 

 
 
 



Reconfiguration Overhead in Dynamic Task-Based Implementation on FPGAs - Nagaraj 
 

 
25 

Table 6 JPEG Applications Data 

 
XAPP637 
RGB to 
YCrCb 

2-D Disc. 
Cosine 

Transform 

XAPP615 
Quantization 

XAPP615 
Inverse-

Quantization 

Inverse 2-D 
Disc. Cosine 
Transform 

XAPP238 
YCrCb to 

RGB 

Num of CLB columns 2 8 6 6 8 2 

Clock Period 8.343E-09 8.249E-09 8.378E-09 7.376E-09 6.580E-09 6.469E-09 

Clock Frequency 1.199E+08 1.212E+08 1.194E+08 1.356E+08 1.520E+08 1.546E+08 

Max Pin Delay 3.571E-09 4.097E-09 4.950E-09 4.847E-09 3.583E-09 3.130E-09 

Worst 10 net Delay 2.712E-09 3.121E-09 4.146E-09 4.026E-09 3.368E-09 2.377E-09 

 

  

Figure 33 XAPP636 constrained at 2 columns Figure 34 XAPP238 constrained at 2 columns 
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Figure 35 Quantize constrained at 8 columns Figure 36 IQuantize constrained at 8 columns 

 
 
 
 

VI. Conclusion 

The general trend observed in the applications has been that the P&R tools are not very 

intelligent in their tasks. On average I expected application performance to increase as the 

constraints were relaxed.  Instead, the general algorithm of the tool spread the application across 

the chip. Some applications, such as the matrix multiplier, work well unconstrained because of 

heavy dependence on I/O pins. But other applications that have a lot of intra routing suffer when 

unconstrained. They perform better when the user actually defines an area of the FPGA chip that 

the application is constrained to. In general the routing and pin delays of an application closely 

follow the clock period. This is logical because as the clock period decreases, there is less time 

for signals to get across the application as well as the chip.  
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Table 7 Descriptions of all CORE Generator Applications 

1-D Discrete Cosine Transform 
This core calculates the 1-Dimensional Discrete Cosine Transform using a Distributed 
Arithmetic approach. The core accepts an incoming parallel data word and performs the DCT or 
Inverse DCT mathematical operation. This core allows the customization of parameters, such as 
DCT points, input data width, coefficient width and result width. 
1024 Fast Fourier Transform  
The vFFT1024 fast Fourier transform (FFT) Core computes a 1024-point complex forward FFT 
or inverse FFT (IFFT). The input data is a vector of 1024 complex values represented as 16-bit 
2’s complement numbers – 16-bits for each of the real and imaginary component of a data 
sample. The 1024 element output vector is also represented using 16 bits for each of the real and 
imaginary components of an output sample. Three memory and data I/O interfaces are supported. 
The user interface can be configured to allow the vfft1024 core to simultaneously input new data, 
transform data stored in memory, and to output previous results. 
2-D Discrete Cosine Transform 
This core performs the 8-point 2-Dimensional Discrete Cosine Transform (Forward and Inverse). 
It uses the Distributed Arithmetic approach in implementing the design. This core offers 
parameterization of the widths of input data, coefficients, internal data path and results. 
256 Fast Fourier Transform 
The vfft256v2 fast Fourier transform (FFT) Core computes a 256-point complex forward FFT or 
inverse FFT (IFFT). The input data is a vector of 256 complex values represented as 16-bit 2’s 
complement numbers – 16-bits for each of the real and imaginary component of a data sample. 
The 256 element output vector is also represented using 16 bits for each of the real and 
imaginary components of an output sample. Three memory and data I/O interfaces are supported. 
The user interface can be configured to allow the vfft256v2 core to simultaneously input new 
data, transform data stored in memory, and to output previous results. 
Cascaded Integrator Comb Filter 
Cascaded Integrator Comb (CIC) Filter or Hogenauer Filter. The CIC filter is useful for 
implementing high sample rate changes in multirate systems. The core supports both 
interpolation and decimation functions. All Virtex, VirtexE, Virtex2, Virtex2Pro and all Spartan 
II devices are supported. 
CORDIC 
The Xilinx CORDIC LogiCORE is a drop-in module for the Virtex(TM), Virtex(TM)-E, 
Virtex(TM)-II and Spartan(TM)-II FPGA families. The core is fully synchronous, using a single 
clock. Options include parameterizable data width, control signals and functional selection. The 
core supports either serial architecture for minimal area implementations, or parallel architecture 
for speed optimization.  The CORDIC incorporates Xilinx Smart-IP technology for maximum 
performance. The core is delivered through the Xilinx CORE Generator System and integrates 
seamlessly with the Xilinx design flow. 
Digital Down Converter 
A direct digital downconverter (DDC) typically performs channel access functions in all-digital 
receivers. The DDC Core accepts an input signal sampled at a high rate (~100 MHz), down 
converts a desired frequency band-of-interest (channel) to baseband (0 Hz) and adjusts the 
sample rate by a factor that is programmable, and ranges from 4 to 1048512. Modern base station 
transceivers will often require a large number of DDCs to support multi-carrier environments or 
for coherently down-converting and combining a number of narrow-band channels into one 
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wide-band digital signal. The DDC is typically located at the front-end of the signal processing 
conditioning chain, close to the A/D, and is usually required to support high-sample rate 
processing in the region of 100+ mega-samples-per-second. 
Direct Digital Synthesizer 
The Direct Digital Synthesizer LogiCORE from Xilinx is a drop-in module for Virtex(TM), 
Virtex(TM)-E, Virtex(TM)-II, Virtex(TM)-II Pro, Spartan(TM)-II and Spartan(TM)-III FPGAs. 
Direct digital synthesizers (DDS), or numerically controlled oscillators (NCO), are important 
components in many digital communication systems.  The Xilinx DDS LogiCORE features sine, 
cosine or quadrature outputs, sine/cosine table depths ranging from 8 to 65536 samples, and 4 to 
32-bit output sample precision. The core supports up to 16 channels by time-sharing the 
sine/cosine table which dramatically reduces the area requirement when multiple channels are 
needed.  Xilinx Smart-IP technology is also leveraged for maximum performance. The core has a 
phase dithering option and a Taylor series correction option that provides high dynamic range 
signals using minimal FPGA resources. In addition, the core has an optional phase offset 
capability, providing support for multiple synthesizers with precisely controlled phase 
differences. It is delivered through the Xilinx CORE Generator System and integrates seamlessly 
with the Xilinx design flow. 
Fast Fourier Transform  
The Fast Fourier Transform (FFT) is a computationally efficient algorithm for computing the 
Discrete Fourier Transform (DFT). The FFT Core can compute 16 to 16384-point forward or 
inverse complex transforms. The input data is a vector of complex values represented as twos-
complement numbers 8, 12, 16, 20, or 24 bits wide. Similarly, the phase factors can be 8, 12, 16, 
20, or 24 bits wide. All memory is on-chip using either Block RAM or Distributed RAM. Three 
arithmetic types are available: full-precision unscaled, scaled fixed-point, and block-floating 
point. Several parameters are run-time configurable: the point size, the choice of forward or 
inverse transform, and the scaling schedule. Three architectures are available to provide a 
tradeoff between size and transform time. 
Multiply Accumulator 
The MAC Core implements a sum-of-products calculation and is a key module for constructing 
FIR and multirate filter structures. Based on user supplied information, the MAC Core 
determines a suitable pipelining strategy to meet a specified performance objective using 
minimal FPGA area. The sum-of-products is computed using full-precision arithmetic, and an 
optional round operation (truncation, round-to-nearest, convergent or round-to-even) can be 
applied to the full-precision result before presenting the final value on the Core output port. 
Sine/Cosine Look-up Table 
The sine/cosine look-up table LogiCORE from Xilinx is a drop-in module for Virtex(TM), 
Virtex(TM)-E, Virtex(TM)-II, Virtex(TM)-II Pro, Spartan(TM)-II and Spartan(TM)-III FPGAs. 
This parameterizable module returns the value sin(theta) and/or the value cos(theta). 
 


