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    SELF-ORGANIZING MAPS 
 
 
 
Abstract 
 
 One of the functions of competitive neural networks is to graphically visualize 
data.  Tuevo Kohonen developed Self Organizing Feature Maps to do just that. The 
algorithm behind SOM is to determine the winning neuron than apply Euclidean distance 
measurements to calculate and assemble the neurons in a high-dimensional space. The 
classic algorithm has been improved constantly in order to facilitate and rapidly form the 
map. Some approaches to improve the algorithm have been by changing the learning 
process by adding kernel functions, allowing for the use of matrices instead of vector 
data, and also layering the SOM itself. Some of these new algorithms include Bayesian 
learning, EM algorithms, Fuzzy SOMs and Growing Hierarchical SOMs. Bayesian 
learning has proved to be faster and more efficient than EM. Some of these algorithms 
have problems such as not being able to converge fast enough and having trouble 
normalizing the input vectors. For now it seems that the GHSOM algorithm is the best 
SOM algorithm developed. 
 
 
Introduction 
 
 Kohonen’s Self-Organizing Maps is a neural network that is similar to the 
structure of the brain. Their application is used to demonstrate patterns but not the way 
Adaptive Resonance Theory is used. SOM is used to observe patterns of topology. The 
architecture of SOM is related to the brain and the way the neurons in the brain are 
arranged.  Self-organizing maps come in two different arrangements, hexagonal and 
rectangular [1]. Each shape contains forty-nine units. Each unit in the rectangle has eight 
neighbors but six in the hexagon. Neighborhoods do not wrap around from one side of 
the grid to the other. The cluster units are linear. There are m cluster units, which are 
arranged in a one or two-dimensional array, the input signals are n-tuples. The weight 
vector for a cluster unit serves as input patterns associated with that cluster. During the 
self-organization process, the cluster unit whose weight vector matches the input pattern 
most closely is chosen as the winner. The winning units and its neighboring units update 
their weights accordingly. The weight vectors of neighboring units are not close to the 
input pattern.  

The classic algorithm of SOM is similar to other competitive networks. As usual 
the algorithm is based on weight changes. The weights are initialized, as are the learning 
rates and neighborhood parameters [2]. The square of the minimum Euclidean distance is 
computed then all the units within a specified neighborhood the new winning unit is the 
sum of the old unit and the product of the learning rate multiplied by the distance 
between the old and new winning unit. The learning rate is then updated. The radius of 
the neighborhood is then shortened at certain times. The stopping condition is tested.  
 The algorithm of SOM determines how the map will appear. Besides the classical 
algorithm there are Bayesian, Expectation Maximization, and Growing Hierarchical Self 
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Organizing Map Algorithms. The latter is an extension of the classic SOM algorithm. 
The soft topographic vector quantization (STVQ) and its extensions are the kernel based 
soft topographic mapping (STMK) and soft topographic mapping for proximity data 
(STMP) are based on Euclidean distances as is the classic algorithm [3]. However, these 
algorithms use fixed neighborhood functions to encode desired relations between 
neighboring units [4]. All of these algorithms are used to design Self-Organizing Maps 
using different techniques and mathematical functions. These algorithms are used for 
different applications and some are generally better than others.  
 
Methods 
 
 To begin the classic algorithm, Kohonen’s SOM, has a learning rate that slowly 
decreases over time, as does the radius of the neighborhood around a cluster unit [5]
 The map then forms. Kohonen’s SOM has been used for certain character 
recognition problems. Mainly though its been used to see a certain path that would use 
the minimum number of units. This has also been known as the traveling salesman 
problem [6].  
 The Bayesian SOM uses a different approach to learn the data. The BSOM is used 
to improve the classic algorithms classification ability [7]. The algorithm begins not by 
setting parameters but by having a certain number (k) of units in the input space. Now 
each unit has specific parameters that designate its weight. The parameters consist of a 
mean vector, covariance matrix, and prior. At each time a sample is taken from the input 
data. The winning unit is chosen from the estimated posterior probability. Then the 
weights of the neighboring units are update according to the following mathematical 
equations. The winner and neurons inside the neighborhood of the winner adapt to this 
input by the corresponding scales apart from the normal learning rate. Each neuron in the 
BSOM learns a model-based pattern distribution. The BSOM naturally estimates the 
mixture of modeled probability density functions in an unsupervised manner [8]. The 
mathematical equation for determining the winning unit is as follows: 
 

  
Then the weights are updates in a fix-sized neighborhood of the winner, according to the 
following self -organizing rules[9]: 
 
 

 
 

 
 
The reason that the updating can be limited to a small (and fixed size) neighborhood of 
the winner is that the topological ordering property, which can always be preserved when 
the mapping is in the same dimension, and the locality of the Gaussians. So, 
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pi(x | θi) ith component conditional density; 
        θι  parameter vector for the ith conditional density,  i=1, 2, …, K;  
        Θ  (θ1, θ2, ..., θK); 
        Pi  prior probability of ith component 

  
 The BSOM algorithm has been compared to the Expectation Maximization algorithm 
because of its similarity.  [10] 

The Expectation Maximization Algorithm can function in two ways, with missing 
input values and without missing input values [11]. The EM algorithm begins by 
expectation; this step minimizes the value of free energy functional, F (P, W) with respect 
to probability assignments P given weight parameters W. The maximization step 
minimizes the value of F (P, W) with respect to parameters W given assignments P [12]. 
However when there are missing values another approach is taken. The expectation step 
takes on a Gaussian probability distribution over the missing inputs given the average 
weight. The maximization step is based on the minimization of free energy with respect 
to parameters W with fixed P. The only difference between the EM algorithm with 
missing values and without missing values is the parameter used for filling in the 
unknown input is the average weight not the original weight [13].           

Another SOM algorithm is called the Growing Hierarchical SOM (GHSOM). 
This is an extension of the classic Kohonen SOM. This algorithm aims to add layers to 
the feature map. Each layer has its own SOM. Layer 0 consists of a single-unit SOM. 
Layer 1 consists of a 2x2 SOM and for each unit in this layer's SOM, additional SOM 
may be added. The same structure applies to lower level SOMs [14].  The GHSOM will 
grow in 2 dimensions, in width (by increasing the size of each SOM) and in depth (by 
increasing the levels of SOM). The algorithm begins the same way the classic algorithm 
begins by initializing the weights of each unit with random values. Compute the 
minimum square of the Euclidean distance of each unit. The unit with the largest 
deviation between its weight and input vectors is chosen as the winner. Then the 
hierarchy comes in. Insert a row or column between the winner and the most dissimilar 
neighbor unit in terms of input space. These steps are repeated until the quantization 
error, the sum of the distances between the weight vector of a unit i and the input vectors 
mapped onto this unit, is t1 fraction of the qi, average quantization error, of the unit i in 
the preceding layer of the hierarchy. The general idea is to keep checking whether the 
lowest level SOMs has achieved sufficient coverage for the underlying input data. Check 
each unit's qi to ensure it is above a certain threshold t2. Assign a SOM layer to each unit 
with qi greater than t2 and train SOM with input vectors mapped to this unit [15].  

Another extension of the classic SOM is the Fuzzy SOM. The Fuzzy SOM [16] 
unlike the classic SOM uses if-then rules on the input-output data. The FSOM learns both 
the centers of clusters and deviations around the centers. The algorithm begins by 
initializing the parameters. Set the value of Qki to zero for each output node. For each k 
and each ai  and Ci=Ck update the parameters. for T times. During this process add the 
value Fki (ai) to Qki in each output node of the FSOM layer. Determine the degrees of 
confidence in the rules by wki=Qki/sum of m to i=d Qkd.  A total of L FSOMS are 



 4

initialized, the fuzzy weight between the jth input node and the ith output node of the kth 
FSOM correspond to the jth fuzzy membership function of the ith rule with the kth output 
value in its then part. Then a lower layer with only one node is added to each FSOM and 
makes the weight between the ith node and the above output node in the kth FSOM 
correspond to the degree of confidence for the ith rule with the kth output value. This 
entire quantity is known as Fuzzy Inference Network (FIN). The output value of each 
FIN is defined as the weighted sum of the outputs from the FSOM layer and the weights 
between the FSOM layer and the output node [17]. Then the output values of the entire 
FIN are normalized. The degrees of confidence of the rules are determined by 
normalizing the total degree of firing in each output node in the FSOM. 
 The next three algorithms are similar in their architecture and overall application. 
The three algorithms are the soft-topographic vector quantization algorithm (STVQ); the 
kernel based soft topographic mapping algorithm (STMK) and the soft topographic 
mapping for proximity data algorithm (STMP).   

STVQ uses the Euclidean distance measure where as the STMK does not. STMK 
and STMP are branches of STVQ [18].   STVQ begins by assuming a cost function. This 
cost function takes its minimum with respect to the parameters to be determined when the 
desired state of the mapping is reached. The minimization of the cost function will 
automatically yield a set of parameters fit for the data. The cost function relies on the 
given data vectors x , model vectors, the neighborhood function, and binary assignment 
variables that are set to one if the data vector x is assigned to node r and the rest are set to 
zero. The cost function is the squared Euclidean distance from the data vector to the 
corresponding model vectors weighted by the neighborhood function. The cost is lowest 
when the model vectors are as close as possible to their assigned data vectors and also 
when their neighbors in the map are assigned to similar data vectors. Therefore 
neighboring nodes represent neighboring volumes of data space. The optimization of the 
cost function depends on both binary variables and continuous variables. This poses a 
problem during the optimization technique. Therefore an important part of the algorithm 
known as deterministic annealing allows the probability distribution over the parameter 
space to be calculated directly and not estimated by a sampling process. The deterministic 
annealing process is performed by cost function parameterized by beta. Beta determines 
the amount of smoothing that is done on the original cost function. [19].  At low values of 
beta the cost function is smoothed to a degree that only one global minimum remains; 
this is determined by an EM algorithm. When beta is large the cost function is reflected 
in the free energy. Deterministic annealing begins by determining the minimum of the 
free energy at low values of beta and attempts to track the minimum through higher 
values of beta, it continues to do so until the global minimum of the free energy at beta 
approaching infinity coincides with the global minimum of the original cost function. The 
minimization of the free energy is achieved in two nested loops. In the inner loop the 
equations can be solved by fixed-point iteration for a given value of beta. The assignment 
probabilities P of x are calculated on the previous estimate of the model vectors [20]. 
This loop ends when the absolute value of the change in the position of the model vector 
is less than 10-5 for data normalized to the unit. This procedure constitutes and EM 
algorithm. In order to find the global minimum of the cost function, beta is varied in the 
outer loop according to an annealing process. It starts at a small value of beta and 
increases stepwise until a good minimum of the original cost function is found at high 
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values of beta. This minimum should correspond to a topologically ordered state of the 
map representing the data. An exponential annealing technique is used to accomplish this. 
The STVQ algorithm uses many techniques seen in other algorithms. It uses fuzzy 
techniques, EM algorithms, and a new technique known as soft SOM. Soft SOM allows 
quick computations of large sets of model vectors [21]. During the annealing process the 
model vectors remain at the center of mass of the data vectors up to a certain value of 
beta. At that point the representation undergoes a transition and the model vectors split up 
in a data space. The initial value of beta should be just slightly higher than the value of 
beta where the model vectors remain. That value is calculated by the eigenvalue of the 
covariance matrix of the data along the principal axis [22]. The annealing process of the 
STVQ has no trouble in finding the globally optimal solution. The deterministic 
annealing technique allows the relations between the nodes to be encoded and this does 
not interfere with the optimization process. Therefore the entire algorithm is as follows 
initialize the model vectors randomly, calculate lookup takes for h, choose beta start, beta 
final, annealing facto and convergence criterion, while beta is less than beta final 
calculate EM algorithm, E step, M step, until beta approaches beta multiplied by 
annealing factor. 

The next algorithm called Kernel Based Soft Topographic mapping (STMK) uses 
new distance measures in data space based on kernel functions. This is similar to the 
STVQ but the extension allows the algorithm to perform in a high-dimensional space. 
Therefore is does not use the usual Euclidean calculations. STMK also uses deterministic 
annealing.  The whole idea between STMK is that its mapping techniques allow the data 
to be seen in a way that is not possible using Euclidean representation. The model vector 
in this space not only represents the mean of its assigned data vectors but also the mean 
of the pair wise correlations of their components [23]. This changes the distances 
between the data vectors and leads to different assignments of data vectors to nodes. The 
quantization is performed in feature space not data space. The cost function for kernel-
based topographic mapping relies on the idea that the model vectors are expressed as 
linear combinations of the data vectors according to the an equation where the 
coefficients are replace the model vectors as map parameters. The kernel function it self 
is calculated in data space instead of feature space. There are three kernel functions used 
the polynomial kernel, which corresponds to a mapping into product spaces of an 
assigned degree. The sigmoid kernel is chosen in analogy to the sigmoid transfer 
function. The last kernel is the RBF kernel, which is isotropic and changes the expected 
range of the nodes in data space. Generally a mapping to a space where the kernel 
function acts as a dot product exists if the kernel function is a continuous kernel of a 
positive integral operator. This condition shows that the quantization can be performed in 
a suitable space whenever the corresponding kernel function is known [24]. The kernel 
function works better than the dot product because it allows the algorithm to work in a 
high-dimensional product space. The neighborhood function is free to encode desired 
neighborhood relations between the nodes. The annealing parameter and the convergence 
parameter use similar values as in STVQ. The parameters of the kernel functions should 
be chosen by trial and error, but should be chosen in accordance with the range and 
dimensionality of the data. Assuming normalized data of dimensionality the polynomial 
kernel takes values of degree from one to six. The sigmoid kernel values should be no 
higher than 1.5. The width of the RBF kernel function should be in the range of 0.1 to 1. 
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Therefore the entire algorithm goes as follows. Initialize parameters randomly, calculate 
the lookup table, chose a kernel function, calculate lookup table for that kernel function at 
time t from the data, choose beta start value and beta final value and the annealing factor 
and convergence criterion. Then while beta start is less than beta final repeat the EM 
algorithm, calculate the E step and M step until beta approaches the annealing factor 
multiplied by beta [25]. The difference between STMK and STVQ is simply the kernel 
function employed in the initialization. The annealing process is calculated by an EM 
algorithm in both algorithms.  

The last algorithm, the Soft Topographic for Proximity data (STMP), uses a 
matrix instead of vectors. The matrix consists of mutual proximities or dissimilarities. 
Some examples are asking subjects to determine the pair wise dissimilarities of a set of 
colors or speech recognition [26]. Each color is a data item, which is characterized only 
by its dissimilarities to other colors. A cost function is used to topographically map the 
data. The elements of the dissimilarity matrix are added to the cost, whenever both data 
items are associated with the same nodes. The neighborhood function again makes sure 
that data items, which are similar, are mapped to nodes, which are close to one another on 
the grid. The overall cost does not increase with the number of items assigned to a node. 
This is necessary in order to obtain a coherent representation of the data. Soft 
assignments of data items to nodes where the partial assignments costs need to be 
determined in terms of the neighborhood function and the dissimilarity data [27]. Then a 
mean-field is used to determine the assignment costs and make the simplifying 
assumptions of zero self-dissimilarity and symmetry of the dissimilarities. The former 
assumption is justified by the fact that the assignment costs is defined only up to an 
additive constant, which leaves the cost function unchanged. The cost function is 
invariant under certain conditions. The equations used for the cost function is similar to 
the kernel functions. The soft assignments and the weighting coefficients of the two 
algorithms have the same form while the equations for the partial assignment costs and 
the mean fields are the same. The algorithm is as follows. Initialize the parameters 
randomly, calculate the lookup table, prepare dissimilarity matrix from data, and choose 
beta start and beta final, annealing factor and convergence criterion, while beta start is 
less than beta final, calculate EM algorithm, set beta to beta start multiplied by annealing. 
The parameters annealing factor and convergence criterion can be chosen in the same 
range as for STVQ [28]. As in STVQ, the neighborhood function is kept constant during 
the optimization process and can be chosen freely to encode desired relations between the 
nodes. STMP is able to perform a mapping from data items that are characterized by 
general mutual dissimilarities to nodes that are characterized by general neighborhood 
couplings. 

All of the algorithms described above have their own applications.  
 
Data 
 
 The classic algorithm has been used to look at patterns in music, and in letters. 
Particularly though the classic algorithm has been used to generate a spanning tree. The 
tree makes it easier to identify the results. The results do not resemble a tree but more a 
wave of lines encasing the patterns. Another application of the classic Kohonen SOM is 
used for finding the shortest trail between certain elements. It also shows useful that 
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changing the weights within a small region of the input space does not change the results 
[29]. Other uses for the classic SOM is clinical voice analysis, monitoring the condition 
of industrial plants and processes, cloud classification from satellite images, analysis of 
electric signals from the brain, organization of and retrieval from large document 
collections, analysis and visualization of large collections of statistical data. In a 
biological aspect the emerging field of functional genomics has needed a technique to 
organize the data from gene expression analysis into a meaningful classes and correlate 
these with other biological datasets. Self-Organizing maps are currently being used to 
mine gene expression data [30]. 
 Bayesian SOM has been used to judge the uncertainty of predictions, to choose 
the appropriate network architecture, and how to adapt to the characteristic of the data 
[31]. The Bayesian SOM converges very fast [32] therefore it proves useful for the data 
mining of gene expression as discussed before. Bayesian techniques have been used by 
biologists to classify tissue samples and attempt to find structure in the genes themselves.  
 The EM algorithm has been seen in other SOM techniques as well. The EM 
algorithm designed for SOM is widely used when data is missing. The algorithm  In the 
EM method, the E step takes an average of the log likelihood function over the missing 
variables, while the M step maximizes this likelihood with respect to each parameter 
[33]. The EM algorithm has been used as a statistical analysis approach to biological 
data. For example scientists have taken samples of salamanders and tried to analyze the 
mating success between different species [34]. The effect of each salamander is assumed 
random while the effect of the species cross is assumed fix. The algorithm was run for 
one hour during which it performed forty-six EM iterations. EM algorithms have proved 
useful in climate data analysis. The EM algorithm allows accurate estimates of the 
missing data therefore giving researchers results to something without any. Schneider 
uses ridge regression and inverse matrices to compute the EM algorithm. The EM 
algorithm cannot only be applied to incomplete datasets containing values of a surface 
temperature at various grid points but it can also be used to construct historic surface 
temperature from proxy data [35].  
 Fuzzy SOMS are widely used in genetic algorithms particularly dealing with 
crossover events in chromosomes. Crossover occurs in genes that are on the same 
chromosome and not too far apart from one another. Crossover allows different gene 
arrangements to come into a population [36]. The chromosomes are represented by bit 
strings, then from these bit strings the fitness of the individual is calculated. The 
chromosomes consist of values of the center and width of a fuzzy membership function. 
One fuzzy rule corresponds to one numerical chromosome using an array of numerical 
parameters from the Gaussian membership functions [37]. The FSOM determines the 
phenotype of the individual. The phenotype is the way the genes represent themselves in 
the individual. Basically the individual learns the input-output data using fuzzy 
competitive learning by representing the chromosome as a starting point of learning, and 
then the fitness of the individual is evaluated based on the learning result [38]. The 
approach is to initialize the arrays randomly and transfer the parameters of the rules in the 
chromosomes into weights, then calculate the fitness based on the parameters of the rules 
in the FSOMs, then calculations are done to figure in crossover and mutation, then the 
weights are modified based on fuzzy competitive learning, then these steps are repeated a 
certain number of times and the degrees of confidence in the rules by normalizing the 
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final fitness values among the chromosomes in the population are calculated. Fuzzy 
SOMS are used in this way to see which population will adapt to a certain environment 
faster than another and which population will be better suited for a certain environment.  
 Growing Hierarchical Self Organizing Maps have been used quite efficiently in 
looking through text documents. Much like a search engine is used to surf the Internet, 
GHSOM is used to sort through large documents. The words of the document are 
represented numerically. The words are listed in a template vector; some modifications to 
the words are made in order to reduce their content. The template vector as one can 
imagine is quite large. Therefore in order to go around this common everyday words like 
the and is, are removed from the vector. Sometimes the program is created to remove 
words that are going to be used in the articles many times. For instance if the article is 
about neural networking, the word computer might be removed. The second part of this 
GHSOM algorithm is that a vector description is created for each document. Every 
document is described by the words in it. Therefore to reduce this to numerical 
representation if the word is in the document the weight vector is a one and zero 
otherwise. Another approach is to have a counter that would keep track of how many 
times a word is present in the document. A word is considered more important if it occurs 
very often in the document, these words receive a low weight. The next step is to 
normalize the unit length to make up for different document lengths. The GHSOM part 
comes in when the SOM is trained. The parameters are set and a hierarchical structure 
begins to form. One particular GHSOM algorithm being used for document archive 
clustered the archive into seven layers [39]. There are a few branches, each branch relates 
to a certain topic. Since the archive is very large some larger clusters are represented by 
two neighboring units that are in the first layer. Therefore items that overlap do not have 
to be in two different layers. GHSOM has proved very useful in organizing large amount 
of documents. One most interesting use for GHSOM is its attempt to detect and classify 
abnormalities of artificial hearts [40]. The GHSOM looks specifically at the aortic 
pressure signal measured from an artificial heart. The network is made up of two 
different SOMs. The first clusters the aortic pressure beat patterns then the input vector of 
the second SOM is associate with a class vector, which is used to output the weights. 
GHSOM has proved to be a very efficient algorithm for clustering and classification. 
 The Soft Topographic Vector Quantization algorithm is not used in a specific 
application but more so for analyzing phase transitions. Pattern recognition and signal 
processing tasks often involve high-dimensional data, which are hard to visualize, and 
cannot be processed directly. It is very important also to fins some mapping of the high-
dimensional input space to a lower dimensional space in a way that shows the spatial 
relations of the data [41]. The phase transitions occur during the annealing process. The 
phase transitions occur in the parameter beta, when the cluster centers are located at the 
center of mass of the data, beta takes on a value that leaves the representation unstable. 
Phase transitions also occur when the dimensionality of the array is less than the 
dimensionality of the data. This then leads to the automatic selection of feature 
dimensions. Also studied using STVQ is the affects of reverse annealing. During this 
time the map gradually unfolds until an ordered state is reached.  
 Kernel-based Soft Topographic Mapping (STMK) is used in another fashion. 
STMK is used primarily to represent clustering in a very high dimension which in a 
nonlinear map. STMK has been used to analyze handwritten digits. Four maps were 
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generated. One map uses polynomial kernel functions while the other three use radial 
basis kernel functions. The maps show that if the digit does not vary when written then 
the digit is coded in a high density [42]. The reason STMK is used over STVQ in this 
application is because the kernel functions allow for simple computations. There are 
other applications to STMK such as document clustering, however it has been shown that 
GHSOM is more accurate and faster for this application.    
 Soft Topographic Mapping for Proximity Data is used for data items that are not 
in a Euclidean data space. This application is most useful for data such as psychology, 
linguistics and economics. Studies have been used STMP to map the cerebral cortex of 
felines. The map shows the connections of the visual region.  
  
Discussion  
  
 One important aspect is to see if one algorithm is sufficient to perform all Self 
Organizing applications. The Growing Hierarchical SOM algorithm is faster than the Soft 
Topographic Mapping Algorithms and the Bayesian Algorithm is faster than the EM 
algorithms. Therefore perhaps an algorithm that incorporates the convergence of the 
Bayesian algorithm with the dimensionality of the GHSOM algorithm would be able to 
perform any task involving clustering. The algorithm would still be hierarchical but each 
individual SOM layer would be performed under Bayesian learning. It has already been 
shown that both the GHSOM and Bayesian SOM algorithms are used in the classification 
of gene expression. Just as the EM algorithm is used in Soft Topographic Mapping both 
kernel based and vector quantization, the Bayesian algorithm could be applied to the 
GHSOM algorithm. 
 The Bayesian algorithm is more efficient than the EM algorithm because it 
converges faster. The reason behind that is the convergent variance index of the EM 
algorithm is always higher than that of the Bayesian. Another reason the Bayesian 
algorithm is more efficient is that the Bayesian algorithm can escape from local minima 
whereas the EM algorithm has trouble doing so [43].  
 The difference between the algorithms is basically how the learning is processed. 
The classic Kohonen SOM uses Euclidean distance as the measurement. Then the 
minimum distance is chosen as the winner. The classic SOM is shown using a hexagonal 
or rectangular grid. Then when the SOM is trained it can result in a spanning tree of data. 
This is shown by the letters recognition example. The other application is the traveling 
salesman problem. The classic SOM is used to find the smallest trail to a certain point 
from a certain unit. Algorithms that do not use Euclidean distance as a tool for 
measurement such as the STMP are more useful for analyzing pair wise dissimilarities by 
using matrices. The other Soft Topographic SOMS such as STVQ and STMK use EM 
algorithms to perform the annealing process. The only difference between the two is that 
the kernel based functions make simpler computations.  
 Fuzzy SOMS are different than most clustering algorithms. Fuzzy SOMS use if 
then statements to learn both the centers of clusters and deviations around the centers. 
Fuzzy SOMS have been used in collaboration with genetic algorithms to calculate fitness 
values. One problem with Fuzzy SOM much like EM algorithms is local minimum and 
correctness rate of the rules change very quickly. All of the algorithms discussed above 
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have their own uses however some are more efficient than others in performing these 
applications.   
  
 
 
Conclusion 
 
 All of the algorithms described above Bayesian, EM, Fuzzy, Growing 
Hierarchical, Soft Topographic Vector Quantization, Kernel-Based Soft Topographic 
Mapping, and Soft Topographic Mapping for Proximity Data are based on self- 
organization and are used to visualize data. Some applications to the algorithms include 
but are not limited to classifying genes and tissue samples, organizing large amounts of 
document based data, visual representation of the cerebral cortex, and examining defects 
of artificial hearts. Each algorithm differs in its mathematical computation of the vectors. 
The classic algorithm uses Euclidean distance whereas the STMP algorithm cannot 
because the data is arranged in a matrix. The learning process in the algorithms of STVQ 
and STMK use an EM algorithm. Both the expectation and maximization steps are 
identical. However, the initialization of the STMK uses appropriate kernel functions. The 
GHSOM has performed the task of layering the SOM, which demonstrates how the 
clustering and overall output of the SOM can be improved. Self Organization Feature 
Maps prove to be a very important and useful neural network tool. 
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