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Abstract 
 
 Self-Organizing Maps have been widely used in analyzing proteins. Proteins 
consist of amino acids; the sequence of amino acids usually determines the function of 
the protein. Therefore if two proteins are similar in sequence they are usually similar in 
function as well. Self-organizing maps have been used mainly to classify proteins in 
families. Another application is to use self-organizing maps to predict the secondary 
structure of a protein based on the primary structure, which is the amino acid sequence. 
Self-organizing maps have been used in conjunction with other methods such as spectral 
analysis of the protein in order to accurately depict the structure of the protein. In 
addition to analyzing patterns in proteins, gene expression patterns have been clustered 
using a modified SOM. The main architecture is a hierarchical tree that clusters the 
enormous amount of data in connection with the structure and pattern of the protein. 
Many of the experiments using SOM in order to predict the secondary structure and 
simply show similarities in proteins have been proven successful but not entirely 
accurate. As more becomes known about proteins through the use of unsupervised neural 
networking more research has been conducted about genes and drug discovery and other 
biomedical information. 
 
Introduction 
 
 Proteins make up one of the four groups of macromolecules. There are four 
structures in a protein. The primary structure of a protein is its amino acid sequence. This 
sequence can range anywhere from around twenty to more than forty thousand amino 
acids. The secondary structure of a protein consists of how these amino acids fold, for 
example alpha helixes and beta sheets. The tertiary structure of a protein consists of 
subunits and how they are arranged in three-dimensional space. The quaternary structure 
of a protein consists of multiple subunits. The secondary, tertiary and quaternary 
structures of protein are all determined by the primary structure. An important task in 
biology is to predict the secondary structure of the protein [1]. Protein structure 
determines function and proteins basically control everything about living organisms. 
Therefore if every structure of a protein can be predicted simply by the amino acid 
sequence then the function can be known and this gives rise to what information is 
encoded in the genome. This will allow scientists to create better treatments for certain 
protein deficiencies and genetic disorders. 
 Self-Organizing maps have been used in order to classify proteins into families. 
These families depend upon the amino acid sequence of the protein, which in turn 
describe their function.  The performance of this neural network relies hierarchical 
clustering. The results are then analyzed from a tree that is produced by linking the 
clusters [2]. In another aspect SOMs are used in order to recognize certain pattern in 
protein structure. For example some proteins that are found in bacteria contain helical 
domains that are distinct to these proteins. The SOM trains twelve sequences using 



sixteen neurons [3]. Other algorithms being used to analyze proteins involve training the 
SOM with six thousand secondary structures [4] and this data is then clustered into about 
two hundred classes. Some problems encountered with using SOM are when the proteins 
are of different sizes. Though they could be almost identical in shape the SOM does not 
prove accurate in this case.  
 Another way of analyzing proteins accurately is using SOM with another method.  
There are many protein databases available already. These databases allow the user to 
enter a sequence and then similar sequences from proteins are returned. Many of the 
SOMs that rely on pattern recognition use these databases in efforts to check the accuracy 
of the network [5]. In pattern recognition the SOM breaks the sequence into segments [6]. 
The SOM for most of the protein analysis programs uses Euclidean distance as 
measurement. A different way of analyzing structure is using a circular dichroism 
spectrum to train the SOM map. The spectrum measures optical activity of the protein; 
this activity is dependent upon the secondary structure. The SOM arranges the spectra. 
 The encoding of the amino acid sequence differs for each algorithm. However, the 
idea of analyzing proteins relies on two properties: the primary structure, which is the 
amino acid sequence and the secondary structure, which is the folding of these amino 
acids. 
 
Methods 
 
 Self-Organizing Maps are used to cluster the protein sequences according to 
similarities in the amino acid sequence. The sequences cannot be compared to directly 
because the lengths of the protein sequences vary. Therefore two proteins can be very 
similar in pattern but be of different sizes.  The SOM algorithm for comparing amino acid 
sequences breaks converts the amino acids into a twenty by twenty matrix. This data is 
used as the input vector. The SOM is trained with multiple protein sequences to allow 
proteins of different sizes to be analyzed. In general related proteins are mapped to 
nearby locations on the map. This allows the protein sequences to be classified into 
families [7]. 
 The most important part of the SOM algorithm for protein analysis is to properly 
encode the amino acid sequences. If any part is encoded incorrectly this will lead to 
erroneous results [8]. Each amino acid sequence is coded using binary numbers. Each of 
the twenty amino acids is coded for. Corresponding amino acids are denoted by a one 
while a zero represents non-similar sequences. The map itself is a two-dimensional layer, 
each part of the grid represents one of the sequence vectors. The sequence vectors on the 
grid are known as slot vectors. During the training process, the slot vectors are set  to 
values of the mean of the sequence vectors. The Euclidean distance from a slot vector is 
calculated and the winning slot vector is chosen an updated according to the Kohonen 
training algorithm. The map is obtained when the slot vectors in the winning 
neighborhood are also updated. During the training process the neighborhood decreases 
to simply one slot vector. The clustering properties of the map are used to classify the 
proteins into families. Some problems arise since the SOM slot vector cannot accurately 
represent the entire family. However these problems are resolved using the distance of 
the sequences in each cluster to determine how large each SOM slot vector should be [9]. 
The tree is formed by branching the clusters that contain the same sequences at 



consecutive levels. Therefore the clusters continue to split into subgroups. The map 
makes clusters of similar size. The slot vectors are compared linearly and then trained to 
allow for a better representation of the protein families. Each sample protein is assigned 
to the slot vector. Groups of similar sequences tend to stay in the same or nearby slots 
[10]. This algorithm allows for classification of protein families.  
 Other algorithms have been used to functionally classify proteins based on their 
secondary structure and amino acid sequence. As before the encoding is highly important 
in addressing this problem. Not only must the input data contain the sequence it must also 
contain information about the size of the protein and arrangement of amino acids in order 
to obtain an accurate depiction of the secondary structure [11]. The structure is 
represented in a twenty- element vector. The sequence is broken down in half in order to 
contain information about both the alpha helix and beta sheet; the most common 
secondary structures. However, in order for the network to compare proteins of different 
sizes, the network elongates shorter sequences. The length of the protein is set to the 
mean of all the proteins presented to the network [12]. The data is placed in a matrix and 
divided into two groups and instead of training every single sequence; only every other 
entry is taken and placed in the training data. The SOM architecture is hexagonal and 
two-dimensional. The network was trained using six thousand secondary structures. The 
output map was two hundred and twenty-five classes so it can be represented using a 
fifteen by fifteen map. The map was designed using MATLAB. The weights of the units 
were calculated using Euclidean distance.  This algorithm proved useful in clustering the 
proteins based on structure.  
 The next algorithms differs from the others in the sense that the SOM is taking 
spectrums of the proteins and organizing them according to their corresponding 
sequences. The training set consists of twenty-four circular dichroism spectra of the 
proteins. The size of the training set then determines the size of the output layer. In order 
to achieve better performance the training set data increased to forty-four spectra. The 
weights are calculated using Euclidean distance as usual [13].  The map in this case is 
sixteen-by sixteen. Presenting the spectra to the network numerous times performs 
training. The amino acid sequences are labeled according to the shape they acquire in the 
protein. Each neuron is labeled with a three- letter sequence on a hexagonal map [14]. 
After training if self-organization has taken place accurately the spectra will be mapped 
on the grid. This algorithm is used to make a prediction on the secondary structure of a 
protein. Its efficacy is tested against a technique used to observe the structure of a protein 
known as X-ray crystallography [15].  
 A more general algorithm is used to simply self-organize all of the known protein 
sequences. One of the problems with this is that encoding long sequences of amino acids 
is very difficult. This new algorithm uses Euclidean metric space. The reason behind this 
mathematical measurement is that metric space encodes far more information than any 
other unit of measurement. The algorithm takes fifty amino acid segments of the protein 
and performs the Euclidean calculations [16]. The major part of this algorithm is its 
ability to cluster the data. The parameters of the clusters are tested against independent 
data. This is done in order to ensure that the data is clustered to the map accordingly. The 
algorithm splits the data into two clusters. Each data point is associated with a point in 
the center of the data. To evaluate the efficacy of this algorithm the output is tested 
against various protein databases.  



 Another SOM algorithm known as Self-Organizing Tree Algorithm (SOTA) is 
used to cluster gene expression patterns [17]. The output is a binary tree with a cluster of 
subgroups. Gene expression patterns tie in closely with protein sequences because one 
gene codes for one protein. Therefore if all known proteins are classified according to 
sequence the genes that code for these proteins can be classified more easily and vice 
versa. 
 
Results 
 
 In the classification of protein families the tree that is generated represents a 
protein evolution tree. All of the families branch out from one another. The tree has a root 
and each branch comes from the root or a subgroup [18]. This tree can in fact be used to 
study the evolutionary relationship between proteins, considering there is relevance. A 
fascinating note of the tree obtained is that when the map is small certain protein families 
are grouped together but separated when the map is larger [19]. This is due to the fact that 
though the proteins are similar, when they are trained on a larger map with larger slot 
vectors there is more accuracy, and the entire sequence can be presented to the network. 
These results were checked against true evolutionary charts of proteins and the SOM 
proved efficient [20]. 
 In the experiment where the classification was made on the functional aspect of 
the protein the SOM proved to be inaccurate in certain cases [21]. The reason for this is 
though a protein’s structure and function are contingent upon each other sometimes 
proteins with similar structure have completely different functions.  
 In another experiment involving the circular dichroism spectra and secondary 
structure of the protein the SOM mapped certain structures to parts of the map. The beta 
sheet was mapped to the upper left of the region [22]. The map shows that weight vector 
arrangement is related to structure. Therefore combining the spectra with the amino acid 
sequences and SOM showed promising results.  
 The organization of all known protein sequences obtained one hundred and six 
clusters [23]. The tree obtained varied from clusters with many to few splits. An 
interesting note is that the splits that are present occur very early in the clustering process. 
According to the tree there are two hundred families per cluster.  The SOM did an 
excellent job clustering the secondary structure of the proteins. For example, the alpha 
helixes and beta sheets are in separate clusters, as they should be. The map also clusters 
proteins that contain the same amino acids. In other words if the sequence does not 
contain one amino acid however, it is similar in sequence to another protein that does 
contain that specific amino acid these proteins are then mapped into different clusters. 
Another interesting biological aspect is that the SOM has mapped proteins that contain 
certain amino acid characteristics together. For instance some proteins contain low 
amounts of hydrophobic amino acids while others contain high amount. These proteins 
are clustered distinctly [24].  
 
 
 
 
 



Discussion 
 
 Each algorithm uses SOM to classify and/or predict the structure of the protein. It 
seems safe to say that SOMs are better at classifying and clustering the proteins into 
families than they are at predicting the structure. One reason could be that Self-
Organizing Maps are designed to cluster they are not specifically designed to generate 
helical and parallel sheets. A consensus can be made that though its predicting ability is 
not as accurate as scientists would like it to be, the recognition and clustering ability is 
phenomenal. For instance, the Self-Organizing Maps does in fact map certain structural 
proteins together [25]. Sequences that form a certain biological structure known as a 
motif were mapped into a certain cluster. This is proof that certain amino acid sequences 
form a structure and this structure corresponds to the function of that protein. For 
example, a motif known as a zinc finger is characteristic of proteins that bind DNA [26]. 
Proteins with this specific sequence were recognized by the SOM and clustered together. 
Another example known as homeobox domain is characteristic of helical proteins that 
also bind DNA. Proteins that fit this pattern were also clustered together. All of these 
proteins function to regulate transcription in the cycle of DNA replication. Other proteins 
function to maintain cellular activity and these proteins contain the same amino acids. 
Therefore they too are mapped in a separate cluster.  
 When it comes to predicting the secondary structure of a protein, SOM is used 
with spectral devices. This method of protein analysis uses the clustering of the SOM to 
deduce the structural representation of the protein [27]. However, it was not accurate at 
predicting certain structures of proteins that the SOM had not seen before. If the spectra 
of that particular structure was presented to the network in training the estimation of a 
protein’s secondary structure was not correct.  
  
 
Conclusion 
 
 In experiments using protein sequences and Self-organizing maps the neural 
network is quite useful in classifying proteins to certain families. This information is 
highly important in today’s biological world because of the new advances being made in 
genetic research. As the information about proteins continues to grow scientists will be 
able to predict the structure of unknown proteins using SOMs and this will enable them 
to determine their function in the human body. With this information new medications 
will arise that can treat people that have protein disorders. Technology will improve the 
accuracy of Self-Organizing Maps and this will greatly impact the fields of molecular 
biology and medicine. 
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