

Overview of DoD S&T Networking and IT Research Priorities, Programs and Funding

Federal Networking and IT Research Opportunities FY 2004 2 October 2003

Dr. André van Tilborg

andre.vantilborg@osd.mil

Director, Information Systems Directorate

Office of Deputy Under Secretary of Defense (Science & Technology)

Office of the Secretary of Defense

DDR&E Organization

To ensure that the warfighters today and tomorrow have superior and affordable technology to support their missions, and to give them revolutionary war-winning capabilities.

Spectrum of S&T

FY04 RDT&E Budget Request

Allocation of DoD FY03 S&T Funds

Distribution of FY03 S&T Funds

From Which DoD Accounts do Universities Receive Support?

DoD FY03 Basic Research Funds

* Other Defense agencies include the Chemical and Biological Defense Program

Comparison of Basic Research Funding

Performers of DoD Basic Research in FY03

DoD Basic Research Funding by Discipline (varies slightly yearly)

DoD's Major Funders of IT & Networks External Research

- Defense Advanced Research Projects Agency
 - Information Processing Technology Office
 - Information Exploitation Office
 - Advanced Technology Office
- Office of Naval Research
 - Information, Electronics, & Surveillance Dept.
 - Mathematics, Computer, and Information Sciences Division
- Air Force Research Laboratory
 - Office of Scientific Research
 - Directorate of Mathematics and Space Sciences
 - Information Directorate
- Army RDECOM
 - Communications-Electronics Research, Development & Engg Ctr.
 - Army Research Laboratory
 - Computational & Information Sciences Directorate
 - Computing and Communications Sciences Division
 - Army Research Office
 - Computing & Information Sciences Division

DoD IT & Networking Key POCs

- Mr James Barbarello CERDEC: james.barbarello@us.army.mil
- Dr Theodore Bially DARPA IXO: tbially@darpa.mil
- Dr Ron Brachman DARPA IPTO: rbrachman@darpa.mil
- Dr Northrup Fowler AFRL/IF: northrup.fowler@afrl.af.mil
- Dr James Gantt ARL: jgantt@arl.army.mil
- Dr David Honey DARPA ATO: honeyd@darpa.mil
- Dr Bobby Junker ONR: junkerb@onr.navy.mil
- Dr Wen Masters ONR: masterw@onr.navy.mil
- Dr Cliff Rhoades AFOSR: clifford.rhoades@afosr.af.mil
- Dr Bill Sander ARO: sander@aro.arl.army.mil
- Mr Charles Strimpler: CERDEC: charles.strimpler@us.army.mil
- Mr Gary Yerace ARL: gyerace@arl.army.mil

Notional Battle Space Information Grid

DoD Reliance: Guidance Regarding DoD Research Directions

https://www.dtic.mil

- National Aerospace Initiative
- Energy and Power Technology Initiative
- Surveillance and Knowledge Systems (SKS) Initiative
 - Focuses on research in C4ISR to enable network-centric ops

Future Objective C4ISR Operational Environment:

Information and Decision Dominance achieved through <u>integrated C4ISR</u> technologies that enable seamless, interoperable, knowledge-based, and assured Joint & Coalition Network-Centric Operations & Warfare.

• <u>Sensing:</u>

Management and tasking of pervasive, persistent sensors for enhancing battlespace knowledge

Comms & Networking:

Guaranteed, 365x24x7, mobile, information access and delivery (always-on "internet dial tone")

Knowledge Management:

Dramatically improved speed of command through integrated Common Picture, Collaboration, and Planning

• Information Security (Cyber Ops): Network protection, information assurance; offensive disruption

SKS Pursues C4ISR S&T Objectives in Six Key Dimensions

- Sensing, Detection, & Tracking Effectiveness
 - Detection of partially obscured and low observable targets
 - Rapidly and remotely detect covert and overt WMD/CBNRE facilities and movement of material

Common Picture Quality

- Automated multi-intelligence data fusion
- Information Distribution

• Decision Quality & Timeliness

- Collaboration
- Accuracy
- Network Coverage
 - Mobile ad hoc self organizing networks
 - End-to-end Quality of Service (QoS)
- Interoperability & Flexibility
 - Information Exchange Richness
 - On Demand Interoperability
- Information Security, Survivability, and Response
 - Cyber attack impact assessment & recovery Course of Action (COA)
 - Synchronize information operations planning and execution to kinetic campaign objectives

High-Priority Technology Gaps

• Sensing:

- Self re-configuring sensor networks
- Multi-source sensor automatic/aided target identification
- On-board and Off board multi-source fusion, automated collaborative platform target identification

• Communications & Networking:

- Seamless, highly scaleable, mobile networking developments and demonstrations across multiple tiers (surface to space)
- On-the-move networking antennas

Knowledge Management:

- Cognitive science-based tools, models, computational methods, and human-computer interfaces
- Future state prediction models
- Real-time consistent level 2 & 3 data fusion
- Automated planning & assessment tools
- Software for verification and validation analyses
- Authoritative data with known confidence
- Reliable, controllable mechanisms for integrating and managing loosely-coupled systems in a dynamic global enterprise
- Information Security, Survivability, & Response:
 - Robust, covert cyber-surveillance tools and techniques
 - Autonomic security management and defense postures for wired and wireless networks
 - Active network defense

Example: How One Service Views Networking and IT Research for its Mission

Dynamic Command & Control

24 Hours a Day -- 24 Time Zones (Foreign and Homeland)

Key Information Capabilities

- Build & maintain a Dynamic Execution Order, covering:
 - Air & Space
 - Cyber
 - Government, Military, Civil
- Distributed configurable centers, adaptable to mission, resources, guidance, & command style
- Minimal forward deployed footprint
- Optimal use of bandwidth, secure assured communication among units

Key Information Drivers

- Integration of <u>defensive</u> & <u>offensive</u> information warfare
- Computer & network attack protection, detection, and response
- Secure, survivable networks for sensitive & classified traffic for Joint/Coalition operations
- Information Assurance for embedded systems
- Integration of IO with conventional operations

Integrated Space, Air, Sea & Ground Operations

Information Technology is the fabric that Integrates Air, Space, Ground and Sea Operations

Key Information Capabilities

- Seamless C2 information systems
- Control and integration of:
 - Ground
 - Sea
 - Air
 - Space

- Cyber Civil Defense
- State/Local FEMA, CDC
- Global information services with assured availability and quality
- Interoperability and Integration with Government and Civil organization

Time-Sensitive Targets

Key Information Drivers

- Seamless (Near) Real Time Operation Between Sensors, Decision Makers, Shooters, and Weapons
- Exploit MTI Data to Find, Fix, Track, Engage mobile targets in "hide" and in motion
- No Move Zones vs. No Fly Zones
- Information architectures for real-time information into and out of the cockpit
- Robust terminal guidance

Commercial versus Military Communications Challenges

Commercial

- Mobile Subscriber, Fixed Infrastructure
- •Pre-configured Networks
- •Tall, Fixed Antenna Towers
- •Fiber optic Internodal Connections
- •Greater Frequency Spectrum Availability
- •Fixed Frequency Assignments
- •Protection: None -> Privacy (single level)
- •Interference Rejection is Somewhat Important
- •Low probability of Detection (LPD) is not an issue

Military

- Mobile Subscriber Mobile
 Infrastructure
- •Ad Hoc, Self Organizing Networks
- •Small, Easily Erectable Masts; Low Profile OTM Antennas
- •Mobile, Wireless, Internodal Connections
- •Restricted Frequency Assignments; Geographically Impacted
- •Protection: None -> Top Secret/SI (Multiple, Simultaneous Levels)
- •Interference Rejection and Antijam are Critical
- •Low Probability of Detection (LPD) is Critical

Examples of Specific Network & IT Research Being Pursued

Image Registration is Fundamental to Automation/Interpretation

Automatic Registration of Surveillance Imagery

- •Images at left share less than 20% common area. Images differ in:
 - Color content (Green vs. Blue Channels)
 - Pose (Perspective change)
 - Severe Occlusion

Automatically Registered Mosaic

Automated Generation of Urban Topography Databases

Original

Processed

Automated Generation of Digital Models via 3-D Hemispheric Imagery

Surveillance by Swarms of Autonomous Mobile Platforms

Maximize Efficiency of RF Spectrum Usage

- Develop Both the Enabling
 Technology and the System
 Concepts to <u>Dynamically</u> Use
 Spectrum
- Autonomous Dynamic Spectrum Utilization
 - Sense, create waveforms, & minimize interference to existing users
- Develop <u>Open XG Protocol Set</u>
- Evolve Spectrum Policy Based Controls

Integrating Intelligent Assistants into Human Teams

Increase the effectiveness of joint Command and Control Teams through the incorporation of Agent Technology in environments that are: distributed, time stressed, uncertain, and open

Semantic Video Object Segmentation and Matching

Ability to relate semantic object specifications to visual appearance is crucial in content-based info indexing and retrieval

Summary

- DoD is a big organization with many IT and Networks research components.
- There is an overarching vision for DoD's IT and Networks research: Network-Centric Operations.
- DoD's IT and Networks research activity is executed in a decentralized and distributed fashion, coordinated through the S&T Reliance process.
- Potential participants in DoD-sponsored IT and Networks research will find it helpful to familiarize themselves with documented research needs, and with the objectives of the specific program officers responsible for advancing key technologies.